kenangan yang dulu terukir mulai luntur
hilang diterpa angin kesalahpahaman
ingin ku ubah semua
namun waktu tak menghendaki
impian mulai berlari menjauh
harapan hidup tiada penting lagi
tanpa dia dunia adalah semu
hanya hadirnya yang bisa mewarnai dunia
adakah kesempatan dia kn kembali
menulis lagi kisah abadi bersama
kasih sayang yang belum sempat bertemu
menjadi kebahagiaan sejati
Friday, June 05, 2009
Malam yang Melelahkan
larut malam menebarkan rasa lelah
gelap mengisi indahnya dunia
udara yang ringan dan sejuk ini
menyesaki relung-relung jiwaku
mata tak setegar di siang hari
kaki tak seringan ketika mentari berterik
jiwa ini meronta-ronta ingin jalan-jalan
ke alam mimpi yang terang dan indah
gelap mengisi indahnya dunia
udara yang ringan dan sejuk ini
menyesaki relung-relung jiwaku
mata tak setegar di siang hari
kaki tak seringan ketika mentari berterik
jiwa ini meronta-ronta ingin jalan-jalan
ke alam mimpi yang terang dan indah
Wednesday, April 15, 2009
Sun
From Wikipedia, the free encyclopedia
Jump to: navigation, search
This article is about the star. For other uses, see Sun (disambiguation).
Semi-protected
The Sun The Sun
Observation data
Mean distance
from Earth 1.496 × 1011 m
8.31 min at light speed
Visual brightness (V) −26.74m [1]
Absolute magnitude 4.83m [1]
Spectral classification G2V
Metallicity Z = 0.0177[2]
Angular size 31.6′ - 32.7′ [3]
Adjectives solar
Orbital characteristics
Mean distance
from Milky Way core ~2.5 × 1020 m
26 000 light-years
Galactic period (2.25–2.50) × 108 a
Velocity ~2.20 × 105 m/s
(orbit around the center of the Galaxy)
~2 × 104 m/s
(relative to average velocity of other stars in stellar neighborhood)
Physical characteristics
Mean diameter 1.392 × 109 m [1]
109 Earths
Equatorial radius 6.955 × 108 m [4]
109 × Earth[4]
Equatorial circumference 4.379 × 109 m [4]
109 × Earth[4]
Flattening 9 × 10−6
Surface area 6.0877 × 1018 m² [4]
11 990 × Earth[4]
Volume 1.412 × 1027 m³ [4]
1 300 000 Earths
Mass 1.9891 × 1030 kg[1]
332 946 Earths[4]
Average density 1.408 × 103 kg/m³[4][1][5]
Different Densities Core: 1.5 × 105 kg/m³
lower Photosphere: 2 × 10-4 kg/m³
lower Cromosphere: 5 × 10-6 kg/m³
Avg. Corona: 10 × 10-12kg/m³[6]
Equatorial surface gravity 274.0 m/s2 [1]
27.94 g
28 × Earth surface gravity[4]
Escape velocity
(from the surface) 617.7 km/s [4]
55 × Earth[4]
Temperature
of surface (effective) 5 778 K [1]
Temperature
of corona ~5 × 106 K
Temperature
of core ~15.7 × 106 K [1]
Luminosity (Lsol) 3.846 × 1026 W [1]
~3.75 × 1028 lm
~98 lm/W efficacy
Mean Intensity (Isol) 2.009 × 107 W m-2 sr-1
Rotation characteristics
Obliquity 7.25° [1]
(to the ecliptic)
67.23°
(to the galactic plane)
Right ascension
of North pole[7] 286.13°
19 h 4 min 30 s
Declination
of North pole +63.87°
63°52' North
Sidereal Rotation period
(at 16° latitude) 25.38 days [1]
25 d 9 h 7 min 13 s[7]
(at equator) 25.05 days [1]
(at poles) 34.3 days [1]
Rotation velocity
(at equator) 7.189 × 103 km/h[4]
Photospheric composition (by mass)
Hydrogen 73.46 %[8]
Helium 24.85 %
Oxygen 0.77 %
Carbon 0.29 %
Iron 0.16 %
Sulfur 0.12 %
Neon 0.12 %
Nitrogen 0.09 %
Silicon 0.07 %
Magnesium 0.05 %
This box: view • talk • edit
The Sun (Latin: Sol), a yellow dwarf, is the star at the center of the Solar System. The Earth and other matter (including other planets, asteroids, meteoroids, comets, and dust) orbit the Sun,[9] which by itself accounts for about 98.6% of the Solar System's mass. The mean distance of the Sun from the Earth is approximately 149,600,000 kilometers, or 92,960,000 miles, and its light travels this distance in 8 minutes and 19 seconds. Energy from the Sun, in the form of sunlight, supports almost all life on Earth via photosynthesis,[10] and drives the Earth's climate and weather.
The surface of the Sun consists of hydrogen (about 74% of its mass, or 92% of its volume), helium (about 24% of mass, 7% of volume), and trace quantities of other elements, including iron, nickel, oxygen, silicon, sulfur, magnesium, carbon, neon, calcium, and chromium.[11] The Sun has a spectral class of G2V. G2 means that it has a surface temperature of approximately 5,780 K (5,500 °C) giving it a white color that often, because of atmospheric scattering, appears yellow when seen from the surface of the Earth. This is a subtractive effect, as the preferential scattering of shorter wavelength light removes enough violet and blue light, leaving a range of frequencies that is perceived by the human eye as yellow. It is this scattering of light at the blue end of the spectrum that gives the surrounding sky its color. When the Sun is low in the sky, even more light is scattered so that the Sun appears orange or even red.[12]
The Sun's spectrum contains lines of ionized and neutral metals as well as very weak hydrogen lines. The V (Roman five) in the spectral class indicates that the Sun, like most stars, is a main sequence star. This means that it generates its energy by nuclear fusion of hydrogen nuclei into helium. There are more than 100 million G2 class stars in our galaxy. Once regarded as a small and relatively insignificant star, the Sun is now known to be brighter than 85% of the stars in the galaxy, most of which are red dwarfs.[13]
The Sun orbits the center of the Milky Way galaxy at a distance of approximately 24,000 to 26,000 light years from the galactic center, moving generally in the direction of Cygnus and completing one revolution in about 225–250 million years (one Galactic year). Its orbital speed was thought to be 220±20 km/s, but a new estimate gives 251 km/s.[14] This is equivalent to about one light-year every 1,190 years, and about one AU every 7 days. These measurements of galactic distance and speed are as accurate as can be, given current knowledge, but this may change as more is learned.[15] Since our galaxy is moving with respect to the cosmic microwave background radiation (CMB) in the direction of Hydra with a speed of 550 km/s, the sun's resultant velocity with respect to the CMB is about 370 km/s in the direction of Crater or Leo.[16]
The Sun is currently traveling through the Local Interstellar Cloud in the low-density Local Bubble zone of diffuse high-temperature gas, in the inner rim of the Orion Arm of the Milky Way Galaxy, between the larger Perseus and Sagittarius arms of the galaxy. Of the 50 nearest stellar systems within 17 light-years (1.6×1014 km) from the Earth, the Sun ranks 4th in absolute magnitude as a fourth magnitude star (M=4.83).[citation needed]
Contents
[hide]
Overview
Moon transit of sun large.ogg
Play video
A lunar transit of the sun captured during calibration of STEREO B's ultraviolet imaging cameras
The Sun is a Population I, or heavy element-rich,[note 1] star.[17] The formation of the Sun may have been triggered by shockwaves from one or more nearby supernovae.[18] This is suggested by a high abundance of heavy elements such as gold and uranium in the Solar System relative to the abundances of these elements in so-called Population II (heavy element-poor) stars. These elements could most plausibly have been produced by endergonic nuclear reactions during a supernova, or by transmutation via neutron absorption inside a massive second-generation star.
Sunlight is Earth's primary source of energy. The solar constant is the amount of power that the Sun deposits per unit area that is directly exposed to sunlight. The solar constant is equal to approximately 1368 watts per square meter at a distance of one AU from the Sun (that is, on or near Earth). Sunlight on the surface of Earth is attenuated by the Earth's atmosphere so that less power arrives at the surface—closer to 1,000 watts per directly exposed square meter in clear conditions when the Sun is near the zenith. This energy can be harnessed via a variety of natural and synthetic processes—photosynthesis by plants captures the energy of sunlight and converts it to chemical form (oxygen and reduced carbon compounds), while direct heating or electrical conversion by solar cells are used by solar power equipment to generate electricity or to do other useful work. The energy stored in petroleum and other fossil fuels was originally converted from sunlight by photosynthesis in the distant past.
Ultraviolet light from the Sun has antiseptic properties and can be used to sanitize tools and water. It also causes sunburn, and has other medical effects such as the production of Vitamin D. Ultraviolet light is strongly attenuated by Earth's ozone layer, so that the amount of UV varies greatly with latitude and has been partially responsible for many biological adaptations, including variations in human skin color in different regions of the globe.[19]
Observed from Earth, the Sun's path across the sky varies throughout the year. The shape described by the Sun's position, considered at the same time each day for a complete year, is called the analemma and resembles a figure 8 aligned along a north/south axis. While the most obvious variation in the Sun's apparent position through the year is a north/south swing over 47 degrees of angle (because of the 23.5-degree tilt of the Earth with respect to the Sun), there is an east/west component as well, caused by the acceleration of the Earth as it approaches its perihelion with the Sun, and the reduction in the Earth's speed as it moves away to approach its aphelion. The north/south swing in apparent angle is the main source of seasons on Earth.
A rare optical phenomenon may occur shortly after sunset or before sunrise, known as a green flash. The flash is caused by light from the sun just below the horizon being bent (usually through a temperature inversion) towards the observer. Light of shorter wavelengths (violet, blue, green) is bent more than that of longer wavelengths (yellow, orange, red) but the violet and blue light is scattered more, leaving light that is perceived as green.[20]
The Sun is a magnetically active star. It supports a strong, changing magnetic field that varies year-to-year and reverses direction about every eleven years around solar maximum. The Sun's magnetic field gives rise to many effects that are collectively called solar activity, including sunspots on the surface of the Sun, solar flares, and variations in solar wind that carry material through the Solar System. Effects of solar activity on Earth include auroras at moderate to high latitudes, and the disruption of radio communications and electric power. Solar activity is thought to have played a large role in the formation and evolution of the Solar System. Solar activity changes the structure of Earth's outer atmosphere.
Although it is the nearest star to Earth and has been intensively studied by scientists, many questions about the Sun remain unanswered. Current topics of scientific inquiry include the Sun's regular cycle of sunspot activity, the physics and origin of flares and prominences, the magnetic interaction between the chromosphere and the corona, and the origin (propulsion source) of solar wind.[citation needed]
Location within the galaxy
The Sun lies close to the inner rim of the Milky Way Galaxy's Orion Arm, in the Local Fluff or the Gould Belt, at a hypothesized distance of 7.62±0.32 kpc (24,800 lightyears) from the Galactic Center.[21][22][23][24] The distance between the local arm and the next arm out, the Perseus Arm, is about 6,500 light-years.[25] The Sun, and thus the Solar System, is found in what scientists call the galactic habitable zone.
The Apex of the Sun's Way, or the solar apex, is the direction that the Sun travels through space in the Milky Way. The general direction of the Sun's galactic motion is towards the star Vega near the constellation of Hercules, at an angle of roughly 60 sky degrees to the direction of the Galactic Center. The Sun's orbit around the Galaxy is expected to be roughly elliptical with the addition of perturbations due to the galactic spiral arms and non-uniform mass distributions. In addition the Sun oscillates up and down relative to the galactic plane approximately 2.7 times per orbit. This is very similar to how a simple harmonic oscillator works with no drag force (damping) term. It has been argued that the Sun's passage through the higher density spiral arms often coincides with mass extinctions on Earth, perhaps due to increased impact events.[26]
It takes the Solar System about 225–250 million years to complete one orbit of the galaxy (a galactic year),[27] so it is thought to have completed 20–25 orbits during the lifetime of the Sun and 1/1250th of a revolution since the origin of humans. The orbital speed of the Solar System about the center of the Galaxy is approximately 251 km/s[14]. At this speed, it takes around 1400 years for the Solar System to travel a distance of 1 light-year, or 8 days to travel 1 AU.[28]
Life cycle
Main articles: Formation and evolution of the Solar System and Stellar evolution
The sun was formed about 4.57 billion years ago when the rapid collapse of a hydrogen molecular cloud led to the formation of a third generation T Tauri Population I star, the Sun. The nascent star assumed a nearly circular orbit about 26,000 light-years from the center of the Milky Way Galaxy.
Solar formation is dated in two ways: the Sun's current main sequence age, determined using computer models of stellar evolution and nucleocosmochronology, is thought to be about 4.57 billion years.[29] This is in close accord with the radiometric date of the oldest solar system material, at 4.567 billion years ago.[30][31]
The Sun is about halfway through its main-sequence evolution, during which nuclear fusion reactions in its core fuse hydrogen into helium. Each second, more than 4 million tonnes of matter are converted into energy within the Sun's core, producing neutrinos and solar radiation; at this rate, the Sun will have so far converted around 100 Earth-masses of matter into energy. The Sun will spend a total of approximately 10 billion years as a main sequence star.[citation needed]
The Sun does not have enough mass to explode as a supernova. Instead, in about 5 billion years, it will enter a red giant phase, its outer layers expanding as the hydrogen fuel in the core is consumed and the core contracts and heats up. Helium fusion will begin when the core temperature reaches around 100 million kelvins and will produce carbon, entering the asymptotic giant branch phase.[17]
Life-cycle of the Sun; sizes are not drawn to scale.
Earth's fate is precarious. As a red giant, the Sun will have a maximum radius beyond the Earth's current orbit, 1 AU (1.5×1011 m), 250 times the present radius of the Sun.[32] However, by the time it is an asymptotic giant branch star, the Sun will have lost roughly 30% of its present mass due to a stellar wind, so the orbits of the planets will move outward. If it were only for this, Earth would probably be spared, but new research suggests that Earth will be swallowed by the Sun owing to tidal interactions.[32] Even if Earth would escape incineration in the Sun, still all its water will be boiled away and most of its atmosphere would escape into space. In fact, even during its current life in the main sequence, the Sun is gradually becoming more luminous (about 10% every 1 billion years), and its surface temperature is slowly rising. The Sun used to be fainter in the past, which is possibly the reason why life on Earth has only existed for about 1 billion years on land. The increase in solar temperatures is such that already in about a billion years, the surface of the Earth will become too hot for liquid water to exist, ending all terrestrial life.[32][33]
Following the red giant phase, intense thermal pulsations will cause the Sun to throw off its outer layers, forming a planetary nebula. The only object that will remain after the outer layers are ejected is the extremely hot stellar core, which will slowly cool and fade as a white dwarf over many billions of years. This stellar evolution scenario is typical of low- to medium-mass stars.[34][35]
Structure
An illustration of the structure of the Sun:
1. Core
2. Radiative zone
3. Convective zone
4. Photosphere
5. Chromosphere
6. Corona
7. Sunspot
8. Granules
9. Prominence
The Sun is a yellow main sequence star comprising about 99% of the total mass of the Solar System. It is a near-perfect sphere, with an oblateness estimated at about 9 millionths,[36] which means that its polar diameter differs from its equatorial diameter by only 10 km (6 mi). As the Sun exists in a plasmatic state and is not solid, it rotates faster at its equator than at its poles. This behavior is known as differential rotation. The period of this actual rotation is approximately 25 days at the equator and 35 days at the poles. However, due to our constantly changing vantage point from the Earth as it orbits the Sun, the apparent rotation of the star at its equator is about 28 days. The centrifugal effect of this slow rotation is 18 million times weaker than the surface gravity at the Sun's equator. The tidal effect of the planets is even weaker, and does not significantly affect the shape of the Sun.
The Sun does not have a definite boundary as rocky planets do, and in its outer parts the density of its gases drops approximately exponentially with increasing distance from its center. Nevertheless, it has a well-defined interior structure, described below. The Sun's radius is measured from its center to the edge of the photosphere. This is simply the layer above which the gases are too cool or too thin to radiate a significant amount of light, and is therefore the surface most readily visible to the naked eye. The solar core comprises 10 percent of its total volume, but 40 percent of its total mass.[37]
The solar interior is not directly observable, and the Sun itself is opaque to electromagnetic radiation. However, just as seismology uses waves generated by earthquakes to reveal the interior structure of the Earth, the discipline of helioseismology makes use of pressure waves (infrasound) traversing the Sun's interior to measure and visualize the star's inner structure. Computer modeling of the Sun is also used as a theoretical tool to investigate its deeper layers.
Core
Main article: Solar core
Cross-section of a solar-type star (NASA)
The core of the Sun is considered to extend from the center to about 0.2 solar radii. It has a density of up to 150,000 kg/m3 (150 times the density of water on Earth) and a temperature of close to 13,600,000 kelvins (by contrast, the surface of the Sun is around 5,800 kelvins). Recent analysis of SOHO mission data favors a faster rotation rate in the core than in the rest of the radiative zone.[38] Through most of the Sun's life, energy is produced by nuclear fusion through a series of steps called the p–p (proton–proton) chain; this process converts hydrogen into helium. The core is the only location in the Sun that produces an appreciable amount of heat via fusion: the rest of the star is heated by energy that is transferred outward from the core. All of the energy produced by fusion in the core must travel through many successive layers to the solar photosphere before it escapes into space as sunlight or kinetic energy of particles.
About 3.4 × 1038 protons (hydrogen nuclei) are converted into helium nuclei every second (out of ~8.9 × 1056 total amount of free protons in the Sun), releasing energy at the matter–energy conversion rate of 4.26 million metric tons per second, 383 yottawatts (3.83 × 1026 W) or 9.15 × 1010 megatons of TNT per second. This actually corresponds to a surprisingly low rate of energy production in the Sun's core—about 0.3 W/m3 (watts per cubic meter). This is less power than generated by a candle. Power density is about 6 µW/kg of matter. For comparison, the human body produces heat at approximately the rate 1.2 W/kg, roughly a million times greater per unit mass. The use of plasma with similar parameters for energy production on Earth would be completely impractical—even a modest 1 GW fusion power plant would require about 170 billion metric ton of plasma occupying almost one cubic mile. Hence, terrestrial fusion reactors utilize far higher plasma temperatures than those in Sun's interior.
The rate of nuclear fusion depends strongly on density and temperature, so the fusion rate in the core is in a self-correcting equilibrium: a slightly higher rate of fusion would cause the core to heat up more and expand slightly against the weight of the outer layers, reducing the fusion rate and correcting the perturbation; and a slightly lower rate would cause the core to cool and shrink slightly, increasing the fusion rate and again reverting it to its present level.
The high-energy photons (gamma rays) released in fusion reactions are absorbed in only a few millimeters of solar plasma and then re-emitted again in random direction (and at slightly lower energy)—so it takes a long time for radiation to reach the Sun's surface. Estimates of the "photon travel time" range between 10,000 and 170,000 years.[39]
After a final trip through the convective outer layer to the transparent "surface" of the photosphere, the photons escape as visible light. Each gamma ray in the Sun's core is converted into several million visible light photons before escaping into space. Neutrinos are also released by the fusion reactions in the core, but unlike photons they rarely interact with matter, so almost all are able to escape the Sun immediately. For many years measurements of the number of neutrinos produced in the Sun were lower than theories predicted by a factor of 3. This discrepancy was recently resolved through the discovery of the effects of neutrino oscillation: the Sun in fact emits the number of neutrinos predicted by the theory, but neutrino detectors were missing 2/3 of them because the neutrinos had changed flavor.[citation needed]
Radiative zone
From about 0.2 to about 0.7 solar radii, solar material is hot and dense enough that thermal radiation is sufficient to transfer the intense heat of the core outward. In this zone there is no thermal convection; while the material grows cooler as altitude increases, this temperature gradient is less than the value of adiabatic lapse rate and hence cannot drive convection. Heat is transferred by radiation—ions of hydrogen and helium emit photons, which travel a brief distance before being reabsorbed by other ions. In this way energy makes its way very slowly (see above) outward.
Between the radiative zone and the convection zone is a transition layer called the tachocline. This is a region where the sharp regime change between the uniform rotation of the radiative zone and the differential rotation of the convection zone results in a large shear—a condition where successive horizontal layers slide past one another.
Convection zone
In the Sun's outer layer (down to approximately 70% of the solar radius), the solar plasma is not dense enough or hot enough to transfer the heat energy of the interior outward via radiation. As a result, thermal convection occurs as thermal columns carry hot material to the surface (photosphere) of the Sun. Once the material cools off at the surface, it plunges back downward to the base of the convection zone, to receive more heat from the top of the radiative zone. Convective overshoot is thought to occur at the base of the convection zone, carrying turbulent downflows into the outer layers of the radiative zone.
The thermal columns in the convection zone form an imprint on the surface of the Sun, in the form of the solar granulation and supergranulation. The turbulent convection of this outer part of the solar interior gives rise to a "small-scale" dynamo that produces magnetic north and south poles all over the surface of the Sun.
The Sun's thermal columns are Bénard cells and therefore tend to be hexagonal prisms.[citation needed]
Photosphere
The effective temperature, or black body temperature, of the Sun (5777 K) is the temperature a black body of the same size must have to yield the same total emissive power.
The visible surface of the Sun, the photosphere, is the layer below which the Sun becomes opaque to visible light. Above the photosphere visible sunlight is free to propagate into space, and its energy escapes the Sun entirely. The change in opacity is due to the decreasing amount of H- ions, which absorb visible light easily. Conversely, the visible light we see is produced as electrons react with hydrogen atoms to produce H- ions.[40][41] The photosphere is actually tens to hundreds of kilometers thick, being slightly less opaque than air on Earth. Because the upper part of the photosphere is cooler than the lower part, an image of the Sun appears brighter in the center than on the edge or limb of the solar disk, in a phenomenon known as limb darkening. Sunlight has approximately a black-body spectrum that indicates its temperature is about 6,000 K, interspersed with atomic absorption lines from the tenuous layers above the photosphere. The photosphere has a particle density of about 1023 m−3 (this is about 1% of the particle density of Earth's atmosphere at sea level).
During early studies of the optical spectrum of the photosphere, some absorption lines were found that did not correspond to any chemical elements then known on Earth. In 1868, Norman Lockyer hypothesized that these absorption lines were because of a new element which he dubbed "helium", after the Greek Sun god Helios. It was not until 25 years later that helium was isolated on Earth.[42]
Atmosphere
Main articles: Corona and Coronal loop
During a total solar eclipse, the solar corona can be seen with the naked eye.
The parts of the Sun above the photosphere are referred to collectively as the solar atmosphere. They can be viewed with telescopes operating across the electromagnetic spectrum, from radio through visible light to gamma rays, and comprise five principal zones: the temperature minimum, the chromosphere, the transition region, the corona, and the heliosphere. The heliosphere, which may be considered the tenuous outer atmosphere of the Sun, extends outward past the orbit of Pluto to the heliopause, where it forms a sharp shock front boundary with the interstellar medium. The chromosphere, transition region, and corona are much hotter than the surface of the Sun. The reason why has not been conclusively proven; evidence suggests that Alfvén waves may have enough energy to heat the corona.[43]
The coolest layer of the Sun is a temperature minimum region about 500 km above the photosphere, with a temperature of about 4,000 K. This part of the Sun is cool enough to support simple molecules such as carbon monoxide and water, which can be detected by their absorption spectra.
Above the temperature minimum layer is a thin layer about 2,500 km thick,[44] dominated by a spectrum of emission and absorption lines. It is called the chromosphere from the Greek root chroma, meaning color, because the chromosphere is visible as a colored flash at the beginning and end of total eclipses of the Sun. The temperature in the chromosphere increases gradually with altitude, ranging up to around 100,000 K near the top.
Taken by Hinode's Solar Optical Telescope on January 12, 2007, this image of the Sun reveals the filamentary nature of the plasma connecting regions of different magnetic polarity.
Above the chromosphere is a transition region in which the temperature rises rapidly from around 100,000 K to coronal temperatures closer to one million K. The increase is because of a phase transition as helium within the region becomes fully ionized by the high temperatures. The transition region does not occur at a well-defined altitude. Rather, it forms a kind of nimbus around chromospheric features such as spicules and filaments, and is in constant, chaotic motion. The transition region is not easily visible from Earth's surface, but is readily observable from space by instruments sensitive to the far ultraviolet portion of the spectrum.
The corona is the extended outer atmosphere of the Sun, which is much larger in volume than the Sun itself. The corona merges smoothly with the solar wind that fills the Solar System and heliosphere. The low corona, which is very near the surface of the Sun, has a particle density of 1014–1016 m−3. (Earth's atmosphere near sea level has a particle density of about 2 × 1025 m−3.) The temperature of the corona is several million kelvins. While no complete theory yet exists to account for the temperature of the corona, at least some of its heat is known to be from magnetic reconnection.
The heliosphere extends from approximately 20 solar radii (0.1 AU) to the outer fringes of the Solar System. Its inner boundary is defined as the layer in which the flow of the solar wind becomes superalfvénic—that is, where the flow becomes faster than the speed of Alfvén waves.[citation needed] Turbulence and dynamic forces outside this boundary cannot affect the shape of the solar corona within, because the information can only travel at the speed of Alfvén waves. The solar wind travels outward continuously through the heliosphere, forming the solar magnetic field into a spiral shape, until it impacts the heliopause more than 50 AU from the Sun. In December 2004, the Voyager 1 probe passed through a shock front that is thought to be part of the heliopause. Both of the Voyager probes have recorded higher levels of energetic particles as they approach the boundary.[45]
Chemical composition
The Sun is composed primarily of the chemical elements hydrogen and helium; they account for 74.9% and 23.8% of the mass of the Sun in the photosphere, respectively.[46] All heavier elements, called metals in astronomy, account for less than 2 percent of the mass. The most abundant metals are oxygen (roughly 1% of the Sun's mass), carbon (0.3%), neon (0.2%), and iron (0.2%).[47]
The Sun inherited its chemical composition from the interstellar medium out of which it formed: the hydrogen and helium in the Sun were produced by Big Bang nucleosynthesis. The metals were produced by stellar nucleosynthesis in generations of stars which completed their stellar evolution and returned their material to the interstellar medium prior to the formation of the Sun.[48] The chemical composition of the photosphere is normally considered representative of the composition of the primordial Solar System.[49] However, since the Sun formed, the helium and heavy elements have settled out of the photosphere. Therefore, the photosphere now contains slightly less helium and only 84% of the heavy elements than the protostellar Sun did; the protostellar Sun was 71.1% hydrogen, 27.4% helium, and 1.5% metals.[46][50]
In the inner portions of the Sun, nuclear fusion has modified the composition by converting hydrogen into helium, so the innermost portion of the Sun is now roughly 60% helium, with the metal abundance unchanged. Because the interior of the Sun is radiative, not convective (see Structure above), none of the fusion products from the core have risen to the photosphere.[51]
The solar heavy-element abundances described above are typically measured both using spectroscopy of the Sun's photosphere and by measuring abundances in meteorites that have never been heated to melting temperatures. These meteorites are thought to retain the composition of the protostellar Sun and thus not affected by settling of heavy elements. The two methods generally agree well.[11]
Singly-ionized iron group elements
In 1970s, much research focused on the abundances of iron group elements in the Sun.[52][53] Although significant research was done, the abundance determination of some iron group elements (eg cobalt and manganese) was still difficult at least as far as 1978 because of their hyperfine structures.[52]
The first largely complete set of oscillator strengths of singly-ionised iron group elements were made available first in the 1960s[54], and improved oscillator strengths were computed in 1976.[55] In 1978 the abundances of singly-ionised elements of the iron group were derived.[52]
Solar and planetary mass fractionation relationship
Various authors have considered the existence of a mass fractionation relationship between the isotopic compositions of solar and planetary noble gases,[56] for example correlations between isotopic compositions of planetary and solar Ne and Xe.[57] Nevertheless, the belief that the whole Sun has the same composition as the solar atmosphere was still widespread, at least until 1983.[58]
In 1983, it was claimed that it was the fractionation in the Sun itself that caused the fractionation relationship between the isotopic compositions of planetary and solar wind implanted noble gases.[58]
Solar cycles
Main article: Sunspots
Sunspots and the sunspot cycle
Measurements of solar cycle variation during the last 30 years
When observing the Sun with appropriate filtration, the most immediately visible features are usually its sunspots, which are well-defined surface areas that appear darker than their surroundings because of lower temperatures. Sunspots are regions of intense magnetic activity where convection is inhibited by strong magnetic fields, reducing energy transport from the hot interior to the surface. The magnetic field gives rise to strong heating in the corona, forming active regions that are the source of intense solar flares and coronal mass ejections. The largest sunspots can be tens of thousands of kilometers across.
Coronal mass ejections blast filaments and bubbles of magnetic plasma into space as seen in this ultra-violet light picture taken by SOHO.
The number of sunspots visible on the Sun is not constant, but varies over an 11-year cycle known as the solar cycle. At a typical solar minimum, few sunspots are visible, and occasionally none at all can be seen. Those that do appear are at high solar latitudes. As the sunspot cycle progresses, the number of sunspots increases and they move closer to the equator of the Sun, a phenomenon described by Spörer's law. Sunspots usually exist as pairs with opposite magnetic polarity. The magnetic polarity of the leading sunspot alternates every solar cycle, so that it will be a north magnetic pole in one solar cycle and a south magnetic pole in the next.
History of the number of observed sunspots during the last 250 years, which shows the ~11-year solar cycle
The solar cycle has a great influence on space weather, and is a significant influence on the Earth's climate since luminosity has a direct relationship with magnetic activity. Solar activity minima tend to be correlated with colder temperatures, and longer than average solar cycles tend to be correlated with hotter temperatures. In the 17th century, the solar cycle appears to have stopped entirely for several decades; very few sunspots were observed during this period. During this era, which is known as the Maunder minimum or Little Ice Age, Europe experienced very cold temperatures.[59] Earlier extended minima have been discovered through analysis of tree rings and also appear to have coincided with lower-than-average global temperatures.
Possible long term cycle
A recent theory claims that there are magnetic instabilities in the core of the Sun which cause fluctuations with periods of either 41,000 or 100,000 years. These could provide a better explanation of the ice ages than the Milankovitch cycles.[60][61]
Theoretical problems
Solar neutrino problem
Main article: Solar neutrino problem
For many years the number of solar electron neutrinos detected on Earth was one third to one half of the number predicted by the standard solar model. This anomalous result was termed the solar neutrino problem. Theories proposed to resolve the problem either tried to reduce the temperature of the Sun's interior to explain the lower neutrino flux, or posited that electron neutrinos could oscillate—that is, change into undetectable tau and muon neutrinos as they traveled between the Sun and the Earth.[62] Several neutrino observatories were built in the 1980s to measure the solar neutrino flux as accurately as possible, including the Sudbury Neutrino Observatory and Kamiokande. Results from these observatories eventually led to the discovery that neutrinos have a very small rest mass and do indeed oscillate.[63] Moreover, in 2001 the Sudbury Neutrino Observatory was able to detect all three types of neutrinos directly, and found that the Sun's total neutrino emission rate agreed with the Standard Solar Model, although depending on the neutrino energy as few as one-third of the neutrinos seen at Earth are of the electron type. This proportion agrees with that predicted by the Mikheyev-Smirnov-Wolfenstein effect (also known as the matter effect), which describes neutrino oscillation in matter. Hence, the problem is now resolved.[citation needed]
Coronal heating problem
Main article: Corona
The optical surface of the Sun (the photosphere) is known to have a temperature of approximately 6,000 K. Above it lies the solar corona at a temperature of 1,000,000 K. The high temperature of the corona shows that it is heated by something other than direct heat conduction from the photosphere.
It is thought that the energy necessary to heat the corona is provided by turbulent motion in the convection zone below the photosphere, and two main mechanisms have been proposed to explain coronal heating. The first is wave heating, in which sound, gravitational and magnetohydrodynamic waves are produced by turbulence in the convection zone. These waves travel upward and dissipate in the corona, depositing their energy in the ambient gas in the form of heat. The other is magnetic heating, in which magnetic energy is continuously built up by photospheric motion and released through magnetic reconnection in the form of large solar flares and myriad similar but smaller events.[64]
Currently, it is unclear whether waves are an efficient heating mechanism. All waves except Alfvén waves have been found to dissipate or refract before reaching the corona.[65] In addition, Alfvén waves do not easily dissipate in the corona. Current research focus has therefore shifted towards flare heating mechanisms. One possible candidate to explain coronal heating is continuous flaring at small scales,[66] but this remains an open topic of investigation.
Faint young Sun problem
Main article: Faint young Sun paradox
Theoretical models of the Sun's development suggest that 3.8 to 2.5 billion years ago, during the Archean period, the Sun was only about 75% as bright as it is today. Such a weak star would not have been able to sustain liquid water on the Earth's surface, and thus life should not have been able to develop. However, the geological record demonstrates that the Earth has remained at a fairly constant temperature throughout its history, and in fact that the young Earth was somewhat warmer than it is today. The consensus among scientists is that the young Earth's atmosphere contained much larger quantities of greenhouse gases (such as carbon dioxide, methane and/or ammonia) than are present today, which trapped enough heat to compensate for the lesser amount of solar energy reaching the planet.[67]
Magnetic field
See also: Stellar magnetic field
The heliospheric current sheet extends to the outer reaches of the Solar System, and results from the influence of the Sun's rotating magnetic field on the plasma in the interplanetary medium.[68]
All matter in the Sun is in the form of gas and plasma because of its high temperatures. This makes it possible for the Sun to rotate faster at its equator (about 25 days) than it does at higher latitudes (about 35 days near its poles). The differential rotation of the Sun's latitudes causes its magnetic field lines to become twisted together over time, causing magnetic field loops to erupt from the Sun's surface and trigger the formation of the Sun's dramatic sunspots and solar prominences (see magnetic reconnection). This twisting action gives rise to the solar dynamo and an 11-year solar cycle of magnetic activity as the Sun's magnetic field reverses itself about every 11 years.
The influence of the Sun's rotating magnetic field on the plasma in the interplanetary medium creates the heliospheric current sheet, which separates regions with magnetic fields pointing in different directions. The plasma in the interplanetary medium is also responsible for the strength of the Sun's magnetic field at the orbit of the Earth. If space were a vacuum, then the Sun's 10-4 tesla magnetic dipole field would reduce with the cube of the distance to about 10-11 tesla. But satellite observations show that it is about 100 times greater at around 10-9 tesla. The dipole field of the sun is roughly the same as the earth's magnetic field, but it extends over a vastly greater volume of space. Magnetohydrodynamic (MHD) theory predicts that the motion of a conducting fluid (such as the interplanetary medium) in a magnetic field induces electric currents, which in turn generate magnetic fields, and in this respect it behaves like an MHD dynamo.
History of observation
Early understanding
The Trundholm Sun chariot pulled by a horse is a sculpture believed to be illustrating an important part of Nordic Bronze Age mythology.
Humanity's most fundamental understanding of the Sun is as the luminous disk in the sky, whose presence above the horizon creates day and whose absence causes night. In many prehistoric and ancient cultures, the Sun was thought to be a solar deity or other supernatural phenomenon. Worship of the Sun was central to civilizations such as the Inca of South America and the Aztecs of what is now Mexico. Many ancient monuments were constructed with solar phenomena in mind; for example, stone megaliths accurately mark the summer or winter solstice (some of the most prominent megaliths are located in Nabta Playa, Egypt, Mnajdra, Malta and at Stonehenge, England); Newgrange, a prehistoric human-built mount in Ireland, was designed to detect the winter solstice; the pyramid of El Castillo at Chichén Itzá in Mexico is designed to cast shadows in the shape of serpents climbing the pyramid at the vernal and autumn equinoxes. During the Roman era the winter solstice was a holiday celebrated as Sol Invictus (literally "unconquered sun") which is an antecedent to Christmas. With respect to the fixed stars, the Sun appears from Earth to revolve once a year along the ecliptic through the zodiac, and so Greek astronomers considered it to be one of the seven planets (Greek planetes, "wanderer"), after which the seven days of the week are named in some languages.
Development of scientific understanding
One of the first people to offer a scientific, or philosophical explanation for the Sun, was the Greek philosopher Anaxagoras, who reasoned that it was a giant flaming ball of metal even larger than the Peloponnesus, and not the chariot of Helios.[citation needed] For teaching this heresy, he was imprisoned by the authorities and sentenced to death, though he was later released through the intervention of Pericles. Eratosthenes might have been the first person to have accurately calculated the distance from the Earth to the Sun, in the 3rd century BCE, as 149 million kilometers, roughly the same as the modern accepted figure.
The theory that the Sun is the center around which the planets move was apparently proposed by the ancient Greek Aristarchus and some Ancient Indians (see Heliocentrism). This view was revived in the 16th century by Nicolaus Copernicus. In the early 17th century, the invention of the telescope permitted detailed observations of sunspots by Thomas Harriot, Galileo Galilei and other astronomers. Galileo made some of the first known Western observations of sunspots and posited that they were on the surface of the Sun rather than small objects passing between the Earth and the Sun.[69] Sunspots were also observed since the Han dynasty and Chinese astronomers maintained records of these observations for centuries. In 1672 Giovanni Cassini and Jean Richer determined the distance to Mars and were thereby able to calculate the distance to the Sun. Isaac Newton observed the Sun's light using a prism, and showed that it was made up of light of many colors,[70] while in 1800 William Herschel discovered infrared radiation beyond the red part of the solar spectrum.[71] The 1800s saw spectroscopic studies of the Sun advance, and Joseph von Fraunhofer made the first observations of absorption lines in the spectrum, the strongest of which are still often referred to as Fraunhofer lines. When expanding the spectrum of light from the Sun, there are large number of missing colors can be found.
In the early years of the modern scientific era, the source of the Sun's energy was a significant puzzle. Lord Kelvin suggested that the Sun was a gradually cooling liquid body that was radiating an internal store of heat.[72] Kelvin and Hermann von Helmholtz then proposed the Kelvin-Helmholtz mechanism to explain the energy output. Unfortunately the resulting age estimate was only 20 million years, well short of the time span of at least 300 million years suggested by some geological discoveries of that time.[72] In 1890 Joseph Lockyer, who discovered helium in the solar spectrum, proposed a meteoritic hypothesis for the formation and evolution of the Sun.[73]
Not until 1904 was a substantiated solution offered. Ernest Rutherford suggested that the Sun's output could be maintained by an internal source of heat, and suggested radioactive decay as the source.[74] However it would be Albert Einstein who would provide the essential clue to the source of the Sun's energy output with his mass-energy equivalence relation E = mc2.
In 1920 Sir Arthur Eddington proposed that the pressures and temperatures at the core of the Sun could produce a nuclear fusion reaction that merged hydrogen (protons) into helium nuclei, resulting in a production of energy from the net change in mass.[75] The preponderance of hydrogen in the Sun was confirmed in 1925 by Cecilia Payne. The theoretical concept of fusion was developed in the 1930s by the astrophysicists Subrahmanyan Chandrasekhar and Hans Bethe. Hans Bethe calculated the details of the two main energy-producing nuclear reactions that power the Sun.[76][77]
Finally, a seminal paper was published in 1957 by Margaret Burbidge, entitled "Synthesis of the Elements in Stars".[78] The paper demonstrated convincingly that most of the elements in the universe had been synthesized by nuclear reactions inside stars, some like our Sun. This revelation stands today as one of the great achievements of science.
Solar space missions
Solar "fireworks" in sequence as recorded in November 2000 by four instruments onboard the SOHO spacecraft
The Moon passing in front of the Sun, as taken by the STEREO-B spacecraft on February 25, 2007. Because the satellite is in an Earth-trailing orbit and is further from the Moon than the Earth is, the Moon appears smaller than the Sun.[79]
The first satellites designed to observe the Sun were NASA's Pioneers 5, 6, 7, 8 and 9, which were launched between 1959 and 1968. These probes orbited the Sun at a distance similar to that of the Earth, and made the first detailed measurements of the solar wind and the solar magnetic field. Pioneer 9 operated for a particularly long period of time, transmitting data until 1987.[80]
In the 1970s, Helios 1 and the Skylab Apollo Telescope Mount provided scientists with significant new data on solar wind and the solar corona. The Helios 1 satellite was a joint U.S.-German probe that studied the solar wind from an orbit carrying the spacecraft inside Mercury's orbit at perihelion. The Skylab space station, launched by NASA in 1973, included a solar observatory module called the Apollo Telescope Mount that was operated by astronauts resident on the station. Skylab made the first time-resolved observations of the solar transition region and of ultraviolet emissions from the solar corona. Discoveries included the first observations of coronal mass ejections, then called "coronal transients", and of coronal holes, now known to be intimately associated with the solar wind.
In 1980, the Solar Maximum Mission was launched by NASA. This spacecraft was designed to observe gamma rays, X-rays and UV radiation from solar flares during a time of high solar activity and solar luminosity. Just a few months after launch, however, an electronics failure caused the probe to go into standby mode, and it spent the next three years in this inactive state. In 1984 Space Shuttle Challenger mission STS-41C retrieved the satellite and repaired its electronics before re-releasing it into orbit. The Solar Maximum Mission subsequently acquired thousands of images of the solar corona before re-entering the Earth's atmosphere in June 1989.[81]
Japan's Yohkoh (Sunbeam) satellite, launched in 1991, observed solar flares at X-ray wavelengths. Mission data allowed scientists to identify several different types of flares, and also demonstrated that the corona away from regions of peak activity was much more dynamic and active than had previously been supposed. Yohkoh observed an entire solar cycle but went into standby mode when an annular eclipse in 2001 caused it to lose its lock on the Sun. It was destroyed by atmospheric reentry in 2005.[82]
One of the most important solar missions to date has been the Solar and Heliospheric Observatory, jointly built by the European Space Agency and NASA and launched on 2 December 1995. Originally a two-year mission, SOHO has now operated for over ten years (as of 2007). It has proved so useful that a follow-on mission, the Solar Dynamics Observatory, is planned for launch in 2008. Situated at the Lagrangian point between the Earth and the Sun (at which the gravitational pull from both is equal), SOHO has provided a constant view of the Sun at many wavelengths since its launch. In addition to its direct solar observation, SOHO has enabled the discovery of large numbers of comets, mostly very tiny sungrazing comets which incinerate as they pass the Sun.[83]
All these satellites have observed the Sun from the plane of the ecliptic, and so have only observed its equatorial regions in detail. The Ulysses probe was launched in 1990 to study the Sun's polar regions. It first traveled to Jupiter, to "slingshot" past the planet into an orbit which would take it far above the plane of the ecliptic. Serendipitously, it was well-placed to observe the collision of Comet Shoemaker-Levy 9 with Jupiter in 1994. Once Ulysses was in its scheduled orbit, it began observing the solar wind and magnetic field strength at high solar latitudes, finding that the solar wind from high latitudes was moving at about 750 km/s which was slower than expected, and that there were large magnetic waves emerging from high latitudes which scattered galactic cosmic rays.[84]
Elemental abundances in the photosphere are well known from spectroscopic studies, but the composition of the interior of the Sun is more poorly understood. A solar wind sample return mission, Genesis, was designed to allow astronomers to directly measure the composition of solar material. Genesis returned to Earth in 2004 but was damaged by a crash landing after its parachute failed to deploy on reentry into Earth's atmosphere. Despite severe damage, some usable samples have been recovered from the spacecraft's sample return module and are undergoing analysis.[citation needed]
The Solar Terrestrial Relations Observatory (STEREO) mission was launched in October 2006. Two identical spacecraft were launched into orbits that cause them to (respectively) pull further ahead of and fall gradually behind the Earth. This enables stereoscopic imaging of the Sun and solar phenomena, such as coronal mass ejections.
If one were to observe it from Alpha Centauri, the closest star system, the Sun would appear to be in the constellation Cassiopeia.[citation needed]
Also, the Indian Space Research Organization is planning the "Aditya" mission to the sun.[85]
Observation and eye damage
The Sun as it appears through a camera lens from the surface of Earth
Sunlight is very bright, and looking directly at the Sun with the naked eye for brief periods can be painful, but is not particularly hazardous for normal, non-dilated eyes.[86][87] Looking directly at the Sun causes phosphene visual artifacts and temporary partial blindness. It also delivers about 4 milliwatts of sunlight to the retina, slightly heating it and potentially causing damage in eyes that cannot respond properly to the brightness.[88][89] UV exposure gradually yellows the lens of the eye over a period of years and is thought to contribute to the formation of cataracts, but this depends on general exposure to solar UV, not on whether one looks directly at the Sun.[90] Long-duration viewing of the direct Sun with the naked eye can begin to cause UV-induced, sunburn-like lesions on the retina after about 100 seconds, particularly under conditions where the UV light from the Sun is intense and well focused;[91][92] conditions are worsened by young eyes or new lens implants (which admit more UV than aging natural eyes), Sun angles near the zenith, and observing locations at high altitude.
Viewing the Sun through light-concentrating optics such as binoculars is very hazardous without an appropriate filter that blocks UV and substantially dims the sunlight. An attenuating (ND) filter might not filter UV and so is still dangerous. Unfiltered binoculars can deliver over 500 times as much energy to the retina as using the naked eye, killing retinal cells almost instantly (even though the power per unit area of image on the retina is the same, the heat cannot dissipate fast enough because the image is larger). Even brief glances at the midday Sun through unfiltered binoculars can cause permanent blindness.[93] One way to view the Sun safely is by projecting its image onto a screen using a telescope and eyepiece without cemented elements. This should only be done with a small refracting telescope (or binoculars) with a clean eyepiece. Other kinds of telescopes can be damaged by this procedure.
Partial solar eclipses are hazardous to view because the eye's pupil is not adapted to the unusually high visual contrast: the pupil dilates according to the total amount of light in the field of view, not by the brightest object in the field. During partial eclipses most sunlight is blocked by the Moon passing in front of the Sun, but the uncovered parts of the photosphere have the same surface brightness as during a normal day. In the overall gloom, the pupil expands from ~2 mm to ~6 mm, and each retinal cell exposed to the solar image receives about ten times more light than it would looking at the non-eclipsed Sun. This can damage or kill those cells, resulting in small permanent blind spots for the viewer.[94] The hazard is insidious for inexperienced observers and for children, because there is no perception of pain: it is not immediately obvious that one's vision is being destroyed.
During sunrise and sunset, sunlight is attenuated due to Rayleigh scattering and Mie scattering from a particularly long passage through Earth's atmosphere and the direct Sun is sometimes faint enough to be viewed comfortably with the naked eye or safely with optics (provided there is no risk of bright sunlight suddenly appearing through a break between clouds). Hazy conditions, atmospheric dust, and high humidity contribute to this atmospheric attenuation.
Attenuating filters to view the Sun should be specifically designed for that use: some improvised filters pass UV or IR rays that can harm the eye at high brightness levels. Filters on telescopes or binoculars should be on the objective lens or aperture, never on the eyepiece, because eyepiece filters can suddenly crack or shatter due to high heat loads from the absorbed sunlight. Welding glass #14 is an acceptable solar filter, but "black" exposed photographic film is not (it passes too much infrared).
In cultural history
Like other natural phenomena, the Sun has been an object of veneration in many cultures throughout human history, and was the source of the word Sunday The Latin name Sol (pronounced /sɒl/ in English) is widely known but not common in general English language use, although the adjectival form is the related word solar. "Sol" is rarely used in scientific circles, and is not considered an official English name of the Sun; it makes no appearances in common reference sources.[95] "Sol" is more likely to be encountered in science fiction writing (Star Trek in particular) as a formal name for the specific star, since in many stories the use of "sun" as a generic term for the local star would be ambiguous. By extension, the Solar System is often referred to in science fiction as the "Sol System".
The term sol is used by planetary astronomers to refer to the duration of a solar day on another planet, such as Mars.[96] A mean Earth solar day is approximately 24 hours, while a mean Martian sol, is 24 hours, 39 minutes, and 35.244 seconds.[97] See also Timekeeping on Mars.
Sol is also the modern word for "Sun" in Portuguese, Spanish, Icelandic, Danish, Norwegian, Swedish, Leonese, Catalan and Galician. The Peruvian currency nuevo sol is named after the Sun (in Spanish), like its successor (and predecessor, in use 1985–1991) the Inti (in Quechua). In Persian, sol means "solar year".
In East Asia the Sun is represented by the symbol 日 (Chinese pinyin rì or Japanese nichi) or 太阳(simplified)/太陽(traditional) (pinyin tài yáng or Japanese taiyō). In Vietnamese these Han words are called nhật and thái dương respectively, while the native Vietnamese word mặt trời literally means "face of the heavens". The Moon and the Sun are associated with the yin and yang where the Moon represents yin and the Sun yang as dynamic opposites.
Jump to: navigation, search
This article is about the star. For other uses, see Sun (disambiguation).
Semi-protected
The Sun The Sun
Observation data
Mean distance
from Earth 1.496 × 1011 m
8.31 min at light speed
Visual brightness (V) −26.74m [1]
Absolute magnitude 4.83m [1]
Spectral classification G2V
Metallicity Z = 0.0177[2]
Angular size 31.6′ - 32.7′ [3]
Adjectives solar
Orbital characteristics
Mean distance
from Milky Way core ~2.5 × 1020 m
26 000 light-years
Galactic period (2.25–2.50) × 108 a
Velocity ~2.20 × 105 m/s
(orbit around the center of the Galaxy)
~2 × 104 m/s
(relative to average velocity of other stars in stellar neighborhood)
Physical characteristics
Mean diameter 1.392 × 109 m [1]
109 Earths
Equatorial radius 6.955 × 108 m [4]
109 × Earth[4]
Equatorial circumference 4.379 × 109 m [4]
109 × Earth[4]
Flattening 9 × 10−6
Surface area 6.0877 × 1018 m² [4]
11 990 × Earth[4]
Volume 1.412 × 1027 m³ [4]
1 300 000 Earths
Mass 1.9891 × 1030 kg[1]
332 946 Earths[4]
Average density 1.408 × 103 kg/m³[4][1][5]
Different Densities Core: 1.5 × 105 kg/m³
lower Photosphere: 2 × 10-4 kg/m³
lower Cromosphere: 5 × 10-6 kg/m³
Avg. Corona: 10 × 10-12kg/m³[6]
Equatorial surface gravity 274.0 m/s2 [1]
27.94 g
28 × Earth surface gravity[4]
Escape velocity
(from the surface) 617.7 km/s [4]
55 × Earth[4]
Temperature
of surface (effective) 5 778 K [1]
Temperature
of corona ~5 × 106 K
Temperature
of core ~15.7 × 106 K [1]
Luminosity (Lsol) 3.846 × 1026 W [1]
~3.75 × 1028 lm
~98 lm/W efficacy
Mean Intensity (Isol) 2.009 × 107 W m-2 sr-1
Rotation characteristics
Obliquity 7.25° [1]
(to the ecliptic)
67.23°
(to the galactic plane)
Right ascension
of North pole[7] 286.13°
19 h 4 min 30 s
Declination
of North pole +63.87°
63°52' North
Sidereal Rotation period
(at 16° latitude) 25.38 days [1]
25 d 9 h 7 min 13 s[7]
(at equator) 25.05 days [1]
(at poles) 34.3 days [1]
Rotation velocity
(at equator) 7.189 × 103 km/h[4]
Photospheric composition (by mass)
Hydrogen 73.46 %[8]
Helium 24.85 %
Oxygen 0.77 %
Carbon 0.29 %
Iron 0.16 %
Sulfur 0.12 %
Neon 0.12 %
Nitrogen 0.09 %
Silicon 0.07 %
Magnesium 0.05 %
This box: view • talk • edit
The Sun (Latin: Sol), a yellow dwarf, is the star at the center of the Solar System. The Earth and other matter (including other planets, asteroids, meteoroids, comets, and dust) orbit the Sun,[9] which by itself accounts for about 98.6% of the Solar System's mass. The mean distance of the Sun from the Earth is approximately 149,600,000 kilometers, or 92,960,000 miles, and its light travels this distance in 8 minutes and 19 seconds. Energy from the Sun, in the form of sunlight, supports almost all life on Earth via photosynthesis,[10] and drives the Earth's climate and weather.
The surface of the Sun consists of hydrogen (about 74% of its mass, or 92% of its volume), helium (about 24% of mass, 7% of volume), and trace quantities of other elements, including iron, nickel, oxygen, silicon, sulfur, magnesium, carbon, neon, calcium, and chromium.[11] The Sun has a spectral class of G2V. G2 means that it has a surface temperature of approximately 5,780 K (5,500 °C) giving it a white color that often, because of atmospheric scattering, appears yellow when seen from the surface of the Earth. This is a subtractive effect, as the preferential scattering of shorter wavelength light removes enough violet and blue light, leaving a range of frequencies that is perceived by the human eye as yellow. It is this scattering of light at the blue end of the spectrum that gives the surrounding sky its color. When the Sun is low in the sky, even more light is scattered so that the Sun appears orange or even red.[12]
The Sun's spectrum contains lines of ionized and neutral metals as well as very weak hydrogen lines. The V (Roman five) in the spectral class indicates that the Sun, like most stars, is a main sequence star. This means that it generates its energy by nuclear fusion of hydrogen nuclei into helium. There are more than 100 million G2 class stars in our galaxy. Once regarded as a small and relatively insignificant star, the Sun is now known to be brighter than 85% of the stars in the galaxy, most of which are red dwarfs.[13]
The Sun orbits the center of the Milky Way galaxy at a distance of approximately 24,000 to 26,000 light years from the galactic center, moving generally in the direction of Cygnus and completing one revolution in about 225–250 million years (one Galactic year). Its orbital speed was thought to be 220±20 km/s, but a new estimate gives 251 km/s.[14] This is equivalent to about one light-year every 1,190 years, and about one AU every 7 days. These measurements of galactic distance and speed are as accurate as can be, given current knowledge, but this may change as more is learned.[15] Since our galaxy is moving with respect to the cosmic microwave background radiation (CMB) in the direction of Hydra with a speed of 550 km/s, the sun's resultant velocity with respect to the CMB is about 370 km/s in the direction of Crater or Leo.[16]
The Sun is currently traveling through the Local Interstellar Cloud in the low-density Local Bubble zone of diffuse high-temperature gas, in the inner rim of the Orion Arm of the Milky Way Galaxy, between the larger Perseus and Sagittarius arms of the galaxy. Of the 50 nearest stellar systems within 17 light-years (1.6×1014 km) from the Earth, the Sun ranks 4th in absolute magnitude as a fourth magnitude star (M=4.83).[citation needed]
Contents
[hide]
Overview
Moon transit of sun large.ogg
Play video
A lunar transit of the sun captured during calibration of STEREO B's ultraviolet imaging cameras
The Sun is a Population I, or heavy element-rich,[note 1] star.[17] The formation of the Sun may have been triggered by shockwaves from one or more nearby supernovae.[18] This is suggested by a high abundance of heavy elements such as gold and uranium in the Solar System relative to the abundances of these elements in so-called Population II (heavy element-poor) stars. These elements could most plausibly have been produced by endergonic nuclear reactions during a supernova, or by transmutation via neutron absorption inside a massive second-generation star.
Sunlight is Earth's primary source of energy. The solar constant is the amount of power that the Sun deposits per unit area that is directly exposed to sunlight. The solar constant is equal to approximately 1368 watts per square meter at a distance of one AU from the Sun (that is, on or near Earth). Sunlight on the surface of Earth is attenuated by the Earth's atmosphere so that less power arrives at the surface—closer to 1,000 watts per directly exposed square meter in clear conditions when the Sun is near the zenith. This energy can be harnessed via a variety of natural and synthetic processes—photosynthesis by plants captures the energy of sunlight and converts it to chemical form (oxygen and reduced carbon compounds), while direct heating or electrical conversion by solar cells are used by solar power equipment to generate electricity or to do other useful work. The energy stored in petroleum and other fossil fuels was originally converted from sunlight by photosynthesis in the distant past.
Ultraviolet light from the Sun has antiseptic properties and can be used to sanitize tools and water. It also causes sunburn, and has other medical effects such as the production of Vitamin D. Ultraviolet light is strongly attenuated by Earth's ozone layer, so that the amount of UV varies greatly with latitude and has been partially responsible for many biological adaptations, including variations in human skin color in different regions of the globe.[19]
Observed from Earth, the Sun's path across the sky varies throughout the year. The shape described by the Sun's position, considered at the same time each day for a complete year, is called the analemma and resembles a figure 8 aligned along a north/south axis. While the most obvious variation in the Sun's apparent position through the year is a north/south swing over 47 degrees of angle (because of the 23.5-degree tilt of the Earth with respect to the Sun), there is an east/west component as well, caused by the acceleration of the Earth as it approaches its perihelion with the Sun, and the reduction in the Earth's speed as it moves away to approach its aphelion. The north/south swing in apparent angle is the main source of seasons on Earth.
A rare optical phenomenon may occur shortly after sunset or before sunrise, known as a green flash. The flash is caused by light from the sun just below the horizon being bent (usually through a temperature inversion) towards the observer. Light of shorter wavelengths (violet, blue, green) is bent more than that of longer wavelengths (yellow, orange, red) but the violet and blue light is scattered more, leaving light that is perceived as green.[20]
The Sun is a magnetically active star. It supports a strong, changing magnetic field that varies year-to-year and reverses direction about every eleven years around solar maximum. The Sun's magnetic field gives rise to many effects that are collectively called solar activity, including sunspots on the surface of the Sun, solar flares, and variations in solar wind that carry material through the Solar System. Effects of solar activity on Earth include auroras at moderate to high latitudes, and the disruption of radio communications and electric power. Solar activity is thought to have played a large role in the formation and evolution of the Solar System. Solar activity changes the structure of Earth's outer atmosphere.
Although it is the nearest star to Earth and has been intensively studied by scientists, many questions about the Sun remain unanswered. Current topics of scientific inquiry include the Sun's regular cycle of sunspot activity, the physics and origin of flares and prominences, the magnetic interaction between the chromosphere and the corona, and the origin (propulsion source) of solar wind.[citation needed]
Location within the galaxy
The Sun lies close to the inner rim of the Milky Way Galaxy's Orion Arm, in the Local Fluff or the Gould Belt, at a hypothesized distance of 7.62±0.32 kpc (24,800 lightyears) from the Galactic Center.[21][22][23][24] The distance between the local arm and the next arm out, the Perseus Arm, is about 6,500 light-years.[25] The Sun, and thus the Solar System, is found in what scientists call the galactic habitable zone.
The Apex of the Sun's Way, or the solar apex, is the direction that the Sun travels through space in the Milky Way. The general direction of the Sun's galactic motion is towards the star Vega near the constellation of Hercules, at an angle of roughly 60 sky degrees to the direction of the Galactic Center. The Sun's orbit around the Galaxy is expected to be roughly elliptical with the addition of perturbations due to the galactic spiral arms and non-uniform mass distributions. In addition the Sun oscillates up and down relative to the galactic plane approximately 2.7 times per orbit. This is very similar to how a simple harmonic oscillator works with no drag force (damping) term. It has been argued that the Sun's passage through the higher density spiral arms often coincides with mass extinctions on Earth, perhaps due to increased impact events.[26]
It takes the Solar System about 225–250 million years to complete one orbit of the galaxy (a galactic year),[27] so it is thought to have completed 20–25 orbits during the lifetime of the Sun and 1/1250th of a revolution since the origin of humans. The orbital speed of the Solar System about the center of the Galaxy is approximately 251 km/s[14]. At this speed, it takes around 1400 years for the Solar System to travel a distance of 1 light-year, or 8 days to travel 1 AU.[28]
Life cycle
Main articles: Formation and evolution of the Solar System and Stellar evolution
The sun was formed about 4.57 billion years ago when the rapid collapse of a hydrogen molecular cloud led to the formation of a third generation T Tauri Population I star, the Sun. The nascent star assumed a nearly circular orbit about 26,000 light-years from the center of the Milky Way Galaxy.
Solar formation is dated in two ways: the Sun's current main sequence age, determined using computer models of stellar evolution and nucleocosmochronology, is thought to be about 4.57 billion years.[29] This is in close accord with the radiometric date of the oldest solar system material, at 4.567 billion years ago.[30][31]
The Sun is about halfway through its main-sequence evolution, during which nuclear fusion reactions in its core fuse hydrogen into helium. Each second, more than 4 million tonnes of matter are converted into energy within the Sun's core, producing neutrinos and solar radiation; at this rate, the Sun will have so far converted around 100 Earth-masses of matter into energy. The Sun will spend a total of approximately 10 billion years as a main sequence star.[citation needed]
The Sun does not have enough mass to explode as a supernova. Instead, in about 5 billion years, it will enter a red giant phase, its outer layers expanding as the hydrogen fuel in the core is consumed and the core contracts and heats up. Helium fusion will begin when the core temperature reaches around 100 million kelvins and will produce carbon, entering the asymptotic giant branch phase.[17]
Life-cycle of the Sun; sizes are not drawn to scale.
Earth's fate is precarious. As a red giant, the Sun will have a maximum radius beyond the Earth's current orbit, 1 AU (1.5×1011 m), 250 times the present radius of the Sun.[32] However, by the time it is an asymptotic giant branch star, the Sun will have lost roughly 30% of its present mass due to a stellar wind, so the orbits of the planets will move outward. If it were only for this, Earth would probably be spared, but new research suggests that Earth will be swallowed by the Sun owing to tidal interactions.[32] Even if Earth would escape incineration in the Sun, still all its water will be boiled away and most of its atmosphere would escape into space. In fact, even during its current life in the main sequence, the Sun is gradually becoming more luminous (about 10% every 1 billion years), and its surface temperature is slowly rising. The Sun used to be fainter in the past, which is possibly the reason why life on Earth has only existed for about 1 billion years on land. The increase in solar temperatures is such that already in about a billion years, the surface of the Earth will become too hot for liquid water to exist, ending all terrestrial life.[32][33]
Following the red giant phase, intense thermal pulsations will cause the Sun to throw off its outer layers, forming a planetary nebula. The only object that will remain after the outer layers are ejected is the extremely hot stellar core, which will slowly cool and fade as a white dwarf over many billions of years. This stellar evolution scenario is typical of low- to medium-mass stars.[34][35]
Structure
An illustration of the structure of the Sun:
1. Core
2. Radiative zone
3. Convective zone
4. Photosphere
5. Chromosphere
6. Corona
7. Sunspot
8. Granules
9. Prominence
The Sun is a yellow main sequence star comprising about 99% of the total mass of the Solar System. It is a near-perfect sphere, with an oblateness estimated at about 9 millionths,[36] which means that its polar diameter differs from its equatorial diameter by only 10 km (6 mi). As the Sun exists in a plasmatic state and is not solid, it rotates faster at its equator than at its poles. This behavior is known as differential rotation. The period of this actual rotation is approximately 25 days at the equator and 35 days at the poles. However, due to our constantly changing vantage point from the Earth as it orbits the Sun, the apparent rotation of the star at its equator is about 28 days. The centrifugal effect of this slow rotation is 18 million times weaker than the surface gravity at the Sun's equator. The tidal effect of the planets is even weaker, and does not significantly affect the shape of the Sun.
The Sun does not have a definite boundary as rocky planets do, and in its outer parts the density of its gases drops approximately exponentially with increasing distance from its center. Nevertheless, it has a well-defined interior structure, described below. The Sun's radius is measured from its center to the edge of the photosphere. This is simply the layer above which the gases are too cool or too thin to radiate a significant amount of light, and is therefore the surface most readily visible to the naked eye. The solar core comprises 10 percent of its total volume, but 40 percent of its total mass.[37]
The solar interior is not directly observable, and the Sun itself is opaque to electromagnetic radiation. However, just as seismology uses waves generated by earthquakes to reveal the interior structure of the Earth, the discipline of helioseismology makes use of pressure waves (infrasound) traversing the Sun's interior to measure and visualize the star's inner structure. Computer modeling of the Sun is also used as a theoretical tool to investigate its deeper layers.
Core
Main article: Solar core
Cross-section of a solar-type star (NASA)
The core of the Sun is considered to extend from the center to about 0.2 solar radii. It has a density of up to 150,000 kg/m3 (150 times the density of water on Earth) and a temperature of close to 13,600,000 kelvins (by contrast, the surface of the Sun is around 5,800 kelvins). Recent analysis of SOHO mission data favors a faster rotation rate in the core than in the rest of the radiative zone.[38] Through most of the Sun's life, energy is produced by nuclear fusion through a series of steps called the p–p (proton–proton) chain; this process converts hydrogen into helium. The core is the only location in the Sun that produces an appreciable amount of heat via fusion: the rest of the star is heated by energy that is transferred outward from the core. All of the energy produced by fusion in the core must travel through many successive layers to the solar photosphere before it escapes into space as sunlight or kinetic energy of particles.
About 3.4 × 1038 protons (hydrogen nuclei) are converted into helium nuclei every second (out of ~8.9 × 1056 total amount of free protons in the Sun), releasing energy at the matter–energy conversion rate of 4.26 million metric tons per second, 383 yottawatts (3.83 × 1026 W) or 9.15 × 1010 megatons of TNT per second. This actually corresponds to a surprisingly low rate of energy production in the Sun's core—about 0.3 W/m3 (watts per cubic meter). This is less power than generated by a candle. Power density is about 6 µW/kg of matter. For comparison, the human body produces heat at approximately the rate 1.2 W/kg, roughly a million times greater per unit mass. The use of plasma with similar parameters for energy production on Earth would be completely impractical—even a modest 1 GW fusion power plant would require about 170 billion metric ton of plasma occupying almost one cubic mile. Hence, terrestrial fusion reactors utilize far higher plasma temperatures than those in Sun's interior.
The rate of nuclear fusion depends strongly on density and temperature, so the fusion rate in the core is in a self-correcting equilibrium: a slightly higher rate of fusion would cause the core to heat up more and expand slightly against the weight of the outer layers, reducing the fusion rate and correcting the perturbation; and a slightly lower rate would cause the core to cool and shrink slightly, increasing the fusion rate and again reverting it to its present level.
The high-energy photons (gamma rays) released in fusion reactions are absorbed in only a few millimeters of solar plasma and then re-emitted again in random direction (and at slightly lower energy)—so it takes a long time for radiation to reach the Sun's surface. Estimates of the "photon travel time" range between 10,000 and 170,000 years.[39]
After a final trip through the convective outer layer to the transparent "surface" of the photosphere, the photons escape as visible light. Each gamma ray in the Sun's core is converted into several million visible light photons before escaping into space. Neutrinos are also released by the fusion reactions in the core, but unlike photons they rarely interact with matter, so almost all are able to escape the Sun immediately. For many years measurements of the number of neutrinos produced in the Sun were lower than theories predicted by a factor of 3. This discrepancy was recently resolved through the discovery of the effects of neutrino oscillation: the Sun in fact emits the number of neutrinos predicted by the theory, but neutrino detectors were missing 2/3 of them because the neutrinos had changed flavor.[citation needed]
Radiative zone
From about 0.2 to about 0.7 solar radii, solar material is hot and dense enough that thermal radiation is sufficient to transfer the intense heat of the core outward. In this zone there is no thermal convection; while the material grows cooler as altitude increases, this temperature gradient is less than the value of adiabatic lapse rate and hence cannot drive convection. Heat is transferred by radiation—ions of hydrogen and helium emit photons, which travel a brief distance before being reabsorbed by other ions. In this way energy makes its way very slowly (see above) outward.
Between the radiative zone and the convection zone is a transition layer called the tachocline. This is a region where the sharp regime change between the uniform rotation of the radiative zone and the differential rotation of the convection zone results in a large shear—a condition where successive horizontal layers slide past one another.
Convection zone
In the Sun's outer layer (down to approximately 70% of the solar radius), the solar plasma is not dense enough or hot enough to transfer the heat energy of the interior outward via radiation. As a result, thermal convection occurs as thermal columns carry hot material to the surface (photosphere) of the Sun. Once the material cools off at the surface, it plunges back downward to the base of the convection zone, to receive more heat from the top of the radiative zone. Convective overshoot is thought to occur at the base of the convection zone, carrying turbulent downflows into the outer layers of the radiative zone.
The thermal columns in the convection zone form an imprint on the surface of the Sun, in the form of the solar granulation and supergranulation. The turbulent convection of this outer part of the solar interior gives rise to a "small-scale" dynamo that produces magnetic north and south poles all over the surface of the Sun.
The Sun's thermal columns are Bénard cells and therefore tend to be hexagonal prisms.[citation needed]
Photosphere
The effective temperature, or black body temperature, of the Sun (5777 K) is the temperature a black body of the same size must have to yield the same total emissive power.
The visible surface of the Sun, the photosphere, is the layer below which the Sun becomes opaque to visible light. Above the photosphere visible sunlight is free to propagate into space, and its energy escapes the Sun entirely. The change in opacity is due to the decreasing amount of H- ions, which absorb visible light easily. Conversely, the visible light we see is produced as electrons react with hydrogen atoms to produce H- ions.[40][41] The photosphere is actually tens to hundreds of kilometers thick, being slightly less opaque than air on Earth. Because the upper part of the photosphere is cooler than the lower part, an image of the Sun appears brighter in the center than on the edge or limb of the solar disk, in a phenomenon known as limb darkening. Sunlight has approximately a black-body spectrum that indicates its temperature is about 6,000 K, interspersed with atomic absorption lines from the tenuous layers above the photosphere. The photosphere has a particle density of about 1023 m−3 (this is about 1% of the particle density of Earth's atmosphere at sea level).
During early studies of the optical spectrum of the photosphere, some absorption lines were found that did not correspond to any chemical elements then known on Earth. In 1868, Norman Lockyer hypothesized that these absorption lines were because of a new element which he dubbed "helium", after the Greek Sun god Helios. It was not until 25 years later that helium was isolated on Earth.[42]
Atmosphere
Main articles: Corona and Coronal loop
During a total solar eclipse, the solar corona can be seen with the naked eye.
The parts of the Sun above the photosphere are referred to collectively as the solar atmosphere. They can be viewed with telescopes operating across the electromagnetic spectrum, from radio through visible light to gamma rays, and comprise five principal zones: the temperature minimum, the chromosphere, the transition region, the corona, and the heliosphere. The heliosphere, which may be considered the tenuous outer atmosphere of the Sun, extends outward past the orbit of Pluto to the heliopause, where it forms a sharp shock front boundary with the interstellar medium. The chromosphere, transition region, and corona are much hotter than the surface of the Sun. The reason why has not been conclusively proven; evidence suggests that Alfvén waves may have enough energy to heat the corona.[43]
The coolest layer of the Sun is a temperature minimum region about 500 km above the photosphere, with a temperature of about 4,000 K. This part of the Sun is cool enough to support simple molecules such as carbon monoxide and water, which can be detected by their absorption spectra.
Above the temperature minimum layer is a thin layer about 2,500 km thick,[44] dominated by a spectrum of emission and absorption lines. It is called the chromosphere from the Greek root chroma, meaning color, because the chromosphere is visible as a colored flash at the beginning and end of total eclipses of the Sun. The temperature in the chromosphere increases gradually with altitude, ranging up to around 100,000 K near the top.
Taken by Hinode's Solar Optical Telescope on January 12, 2007, this image of the Sun reveals the filamentary nature of the plasma connecting regions of different magnetic polarity.
Above the chromosphere is a transition region in which the temperature rises rapidly from around 100,000 K to coronal temperatures closer to one million K. The increase is because of a phase transition as helium within the region becomes fully ionized by the high temperatures. The transition region does not occur at a well-defined altitude. Rather, it forms a kind of nimbus around chromospheric features such as spicules and filaments, and is in constant, chaotic motion. The transition region is not easily visible from Earth's surface, but is readily observable from space by instruments sensitive to the far ultraviolet portion of the spectrum.
The corona is the extended outer atmosphere of the Sun, which is much larger in volume than the Sun itself. The corona merges smoothly with the solar wind that fills the Solar System and heliosphere. The low corona, which is very near the surface of the Sun, has a particle density of 1014–1016 m−3. (Earth's atmosphere near sea level has a particle density of about 2 × 1025 m−3.) The temperature of the corona is several million kelvins. While no complete theory yet exists to account for the temperature of the corona, at least some of its heat is known to be from magnetic reconnection.
The heliosphere extends from approximately 20 solar radii (0.1 AU) to the outer fringes of the Solar System. Its inner boundary is defined as the layer in which the flow of the solar wind becomes superalfvénic—that is, where the flow becomes faster than the speed of Alfvén waves.[citation needed] Turbulence and dynamic forces outside this boundary cannot affect the shape of the solar corona within, because the information can only travel at the speed of Alfvén waves. The solar wind travels outward continuously through the heliosphere, forming the solar magnetic field into a spiral shape, until it impacts the heliopause more than 50 AU from the Sun. In December 2004, the Voyager 1 probe passed through a shock front that is thought to be part of the heliopause. Both of the Voyager probes have recorded higher levels of energetic particles as they approach the boundary.[45]
Chemical composition
The Sun is composed primarily of the chemical elements hydrogen and helium; they account for 74.9% and 23.8% of the mass of the Sun in the photosphere, respectively.[46] All heavier elements, called metals in astronomy, account for less than 2 percent of the mass. The most abundant metals are oxygen (roughly 1% of the Sun's mass), carbon (0.3%), neon (0.2%), and iron (0.2%).[47]
The Sun inherited its chemical composition from the interstellar medium out of which it formed: the hydrogen and helium in the Sun were produced by Big Bang nucleosynthesis. The metals were produced by stellar nucleosynthesis in generations of stars which completed their stellar evolution and returned their material to the interstellar medium prior to the formation of the Sun.[48] The chemical composition of the photosphere is normally considered representative of the composition of the primordial Solar System.[49] However, since the Sun formed, the helium and heavy elements have settled out of the photosphere. Therefore, the photosphere now contains slightly less helium and only 84% of the heavy elements than the protostellar Sun did; the protostellar Sun was 71.1% hydrogen, 27.4% helium, and 1.5% metals.[46][50]
In the inner portions of the Sun, nuclear fusion has modified the composition by converting hydrogen into helium, so the innermost portion of the Sun is now roughly 60% helium, with the metal abundance unchanged. Because the interior of the Sun is radiative, not convective (see Structure above), none of the fusion products from the core have risen to the photosphere.[51]
The solar heavy-element abundances described above are typically measured both using spectroscopy of the Sun's photosphere and by measuring abundances in meteorites that have never been heated to melting temperatures. These meteorites are thought to retain the composition of the protostellar Sun and thus not affected by settling of heavy elements. The two methods generally agree well.[11]
Singly-ionized iron group elements
In 1970s, much research focused on the abundances of iron group elements in the Sun.[52][53] Although significant research was done, the abundance determination of some iron group elements (eg cobalt and manganese) was still difficult at least as far as 1978 because of their hyperfine structures.[52]
The first largely complete set of oscillator strengths of singly-ionised iron group elements were made available first in the 1960s[54], and improved oscillator strengths were computed in 1976.[55] In 1978 the abundances of singly-ionised elements of the iron group were derived.[52]
Solar and planetary mass fractionation relationship
Various authors have considered the existence of a mass fractionation relationship between the isotopic compositions of solar and planetary noble gases,[56] for example correlations between isotopic compositions of planetary and solar Ne and Xe.[57] Nevertheless, the belief that the whole Sun has the same composition as the solar atmosphere was still widespread, at least until 1983.[58]
In 1983, it was claimed that it was the fractionation in the Sun itself that caused the fractionation relationship between the isotopic compositions of planetary and solar wind implanted noble gases.[58]
Solar cycles
Main article: Sunspots
Sunspots and the sunspot cycle
Measurements of solar cycle variation during the last 30 years
When observing the Sun with appropriate filtration, the most immediately visible features are usually its sunspots, which are well-defined surface areas that appear darker than their surroundings because of lower temperatures. Sunspots are regions of intense magnetic activity where convection is inhibited by strong magnetic fields, reducing energy transport from the hot interior to the surface. The magnetic field gives rise to strong heating in the corona, forming active regions that are the source of intense solar flares and coronal mass ejections. The largest sunspots can be tens of thousands of kilometers across.
Coronal mass ejections blast filaments and bubbles of magnetic plasma into space as seen in this ultra-violet light picture taken by SOHO.
The number of sunspots visible on the Sun is not constant, but varies over an 11-year cycle known as the solar cycle. At a typical solar minimum, few sunspots are visible, and occasionally none at all can be seen. Those that do appear are at high solar latitudes. As the sunspot cycle progresses, the number of sunspots increases and they move closer to the equator of the Sun, a phenomenon described by Spörer's law. Sunspots usually exist as pairs with opposite magnetic polarity. The magnetic polarity of the leading sunspot alternates every solar cycle, so that it will be a north magnetic pole in one solar cycle and a south magnetic pole in the next.
History of the number of observed sunspots during the last 250 years, which shows the ~11-year solar cycle
The solar cycle has a great influence on space weather, and is a significant influence on the Earth's climate since luminosity has a direct relationship with magnetic activity. Solar activity minima tend to be correlated with colder temperatures, and longer than average solar cycles tend to be correlated with hotter temperatures. In the 17th century, the solar cycle appears to have stopped entirely for several decades; very few sunspots were observed during this period. During this era, which is known as the Maunder minimum or Little Ice Age, Europe experienced very cold temperatures.[59] Earlier extended minima have been discovered through analysis of tree rings and also appear to have coincided with lower-than-average global temperatures.
Possible long term cycle
A recent theory claims that there are magnetic instabilities in the core of the Sun which cause fluctuations with periods of either 41,000 or 100,000 years. These could provide a better explanation of the ice ages than the Milankovitch cycles.[60][61]
Theoretical problems
Solar neutrino problem
Main article: Solar neutrino problem
For many years the number of solar electron neutrinos detected on Earth was one third to one half of the number predicted by the standard solar model. This anomalous result was termed the solar neutrino problem. Theories proposed to resolve the problem either tried to reduce the temperature of the Sun's interior to explain the lower neutrino flux, or posited that electron neutrinos could oscillate—that is, change into undetectable tau and muon neutrinos as they traveled between the Sun and the Earth.[62] Several neutrino observatories were built in the 1980s to measure the solar neutrino flux as accurately as possible, including the Sudbury Neutrino Observatory and Kamiokande. Results from these observatories eventually led to the discovery that neutrinos have a very small rest mass and do indeed oscillate.[63] Moreover, in 2001 the Sudbury Neutrino Observatory was able to detect all three types of neutrinos directly, and found that the Sun's total neutrino emission rate agreed with the Standard Solar Model, although depending on the neutrino energy as few as one-third of the neutrinos seen at Earth are of the electron type. This proportion agrees with that predicted by the Mikheyev-Smirnov-Wolfenstein effect (also known as the matter effect), which describes neutrino oscillation in matter. Hence, the problem is now resolved.[citation needed]
Coronal heating problem
Main article: Corona
The optical surface of the Sun (the photosphere) is known to have a temperature of approximately 6,000 K. Above it lies the solar corona at a temperature of 1,000,000 K. The high temperature of the corona shows that it is heated by something other than direct heat conduction from the photosphere.
It is thought that the energy necessary to heat the corona is provided by turbulent motion in the convection zone below the photosphere, and two main mechanisms have been proposed to explain coronal heating. The first is wave heating, in which sound, gravitational and magnetohydrodynamic waves are produced by turbulence in the convection zone. These waves travel upward and dissipate in the corona, depositing their energy in the ambient gas in the form of heat. The other is magnetic heating, in which magnetic energy is continuously built up by photospheric motion and released through magnetic reconnection in the form of large solar flares and myriad similar but smaller events.[64]
Currently, it is unclear whether waves are an efficient heating mechanism. All waves except Alfvén waves have been found to dissipate or refract before reaching the corona.[65] In addition, Alfvén waves do not easily dissipate in the corona. Current research focus has therefore shifted towards flare heating mechanisms. One possible candidate to explain coronal heating is continuous flaring at small scales,[66] but this remains an open topic of investigation.
Faint young Sun problem
Main article: Faint young Sun paradox
Theoretical models of the Sun's development suggest that 3.8 to 2.5 billion years ago, during the Archean period, the Sun was only about 75% as bright as it is today. Such a weak star would not have been able to sustain liquid water on the Earth's surface, and thus life should not have been able to develop. However, the geological record demonstrates that the Earth has remained at a fairly constant temperature throughout its history, and in fact that the young Earth was somewhat warmer than it is today. The consensus among scientists is that the young Earth's atmosphere contained much larger quantities of greenhouse gases (such as carbon dioxide, methane and/or ammonia) than are present today, which trapped enough heat to compensate for the lesser amount of solar energy reaching the planet.[67]
Magnetic field
See also: Stellar magnetic field
The heliospheric current sheet extends to the outer reaches of the Solar System, and results from the influence of the Sun's rotating magnetic field on the plasma in the interplanetary medium.[68]
All matter in the Sun is in the form of gas and plasma because of its high temperatures. This makes it possible for the Sun to rotate faster at its equator (about 25 days) than it does at higher latitudes (about 35 days near its poles). The differential rotation of the Sun's latitudes causes its magnetic field lines to become twisted together over time, causing magnetic field loops to erupt from the Sun's surface and trigger the formation of the Sun's dramatic sunspots and solar prominences (see magnetic reconnection). This twisting action gives rise to the solar dynamo and an 11-year solar cycle of magnetic activity as the Sun's magnetic field reverses itself about every 11 years.
The influence of the Sun's rotating magnetic field on the plasma in the interplanetary medium creates the heliospheric current sheet, which separates regions with magnetic fields pointing in different directions. The plasma in the interplanetary medium is also responsible for the strength of the Sun's magnetic field at the orbit of the Earth. If space were a vacuum, then the Sun's 10-4 tesla magnetic dipole field would reduce with the cube of the distance to about 10-11 tesla. But satellite observations show that it is about 100 times greater at around 10-9 tesla. The dipole field of the sun is roughly the same as the earth's magnetic field, but it extends over a vastly greater volume of space. Magnetohydrodynamic (MHD) theory predicts that the motion of a conducting fluid (such as the interplanetary medium) in a magnetic field induces electric currents, which in turn generate magnetic fields, and in this respect it behaves like an MHD dynamo.
History of observation
Early understanding
The Trundholm Sun chariot pulled by a horse is a sculpture believed to be illustrating an important part of Nordic Bronze Age mythology.
Humanity's most fundamental understanding of the Sun is as the luminous disk in the sky, whose presence above the horizon creates day and whose absence causes night. In many prehistoric and ancient cultures, the Sun was thought to be a solar deity or other supernatural phenomenon. Worship of the Sun was central to civilizations such as the Inca of South America and the Aztecs of what is now Mexico. Many ancient monuments were constructed with solar phenomena in mind; for example, stone megaliths accurately mark the summer or winter solstice (some of the most prominent megaliths are located in Nabta Playa, Egypt, Mnajdra, Malta and at Stonehenge, England); Newgrange, a prehistoric human-built mount in Ireland, was designed to detect the winter solstice; the pyramid of El Castillo at Chichén Itzá in Mexico is designed to cast shadows in the shape of serpents climbing the pyramid at the vernal and autumn equinoxes. During the Roman era the winter solstice was a holiday celebrated as Sol Invictus (literally "unconquered sun") which is an antecedent to Christmas. With respect to the fixed stars, the Sun appears from Earth to revolve once a year along the ecliptic through the zodiac, and so Greek astronomers considered it to be one of the seven planets (Greek planetes, "wanderer"), after which the seven days of the week are named in some languages.
Development of scientific understanding
One of the first people to offer a scientific, or philosophical explanation for the Sun, was the Greek philosopher Anaxagoras, who reasoned that it was a giant flaming ball of metal even larger than the Peloponnesus, and not the chariot of Helios.[citation needed] For teaching this heresy, he was imprisoned by the authorities and sentenced to death, though he was later released through the intervention of Pericles. Eratosthenes might have been the first person to have accurately calculated the distance from the Earth to the Sun, in the 3rd century BCE, as 149 million kilometers, roughly the same as the modern accepted figure.
The theory that the Sun is the center around which the planets move was apparently proposed by the ancient Greek Aristarchus and some Ancient Indians (see Heliocentrism). This view was revived in the 16th century by Nicolaus Copernicus. In the early 17th century, the invention of the telescope permitted detailed observations of sunspots by Thomas Harriot, Galileo Galilei and other astronomers. Galileo made some of the first known Western observations of sunspots and posited that they were on the surface of the Sun rather than small objects passing between the Earth and the Sun.[69] Sunspots were also observed since the Han dynasty and Chinese astronomers maintained records of these observations for centuries. In 1672 Giovanni Cassini and Jean Richer determined the distance to Mars and were thereby able to calculate the distance to the Sun. Isaac Newton observed the Sun's light using a prism, and showed that it was made up of light of many colors,[70] while in 1800 William Herschel discovered infrared radiation beyond the red part of the solar spectrum.[71] The 1800s saw spectroscopic studies of the Sun advance, and Joseph von Fraunhofer made the first observations of absorption lines in the spectrum, the strongest of which are still often referred to as Fraunhofer lines. When expanding the spectrum of light from the Sun, there are large number of missing colors can be found.
In the early years of the modern scientific era, the source of the Sun's energy was a significant puzzle. Lord Kelvin suggested that the Sun was a gradually cooling liquid body that was radiating an internal store of heat.[72] Kelvin and Hermann von Helmholtz then proposed the Kelvin-Helmholtz mechanism to explain the energy output. Unfortunately the resulting age estimate was only 20 million years, well short of the time span of at least 300 million years suggested by some geological discoveries of that time.[72] In 1890 Joseph Lockyer, who discovered helium in the solar spectrum, proposed a meteoritic hypothesis for the formation and evolution of the Sun.[73]
Not until 1904 was a substantiated solution offered. Ernest Rutherford suggested that the Sun's output could be maintained by an internal source of heat, and suggested radioactive decay as the source.[74] However it would be Albert Einstein who would provide the essential clue to the source of the Sun's energy output with his mass-energy equivalence relation E = mc2.
In 1920 Sir Arthur Eddington proposed that the pressures and temperatures at the core of the Sun could produce a nuclear fusion reaction that merged hydrogen (protons) into helium nuclei, resulting in a production of energy from the net change in mass.[75] The preponderance of hydrogen in the Sun was confirmed in 1925 by Cecilia Payne. The theoretical concept of fusion was developed in the 1930s by the astrophysicists Subrahmanyan Chandrasekhar and Hans Bethe. Hans Bethe calculated the details of the two main energy-producing nuclear reactions that power the Sun.[76][77]
Finally, a seminal paper was published in 1957 by Margaret Burbidge, entitled "Synthesis of the Elements in Stars".[78] The paper demonstrated convincingly that most of the elements in the universe had been synthesized by nuclear reactions inside stars, some like our Sun. This revelation stands today as one of the great achievements of science.
Solar space missions
Solar "fireworks" in sequence as recorded in November 2000 by four instruments onboard the SOHO spacecraft
The Moon passing in front of the Sun, as taken by the STEREO-B spacecraft on February 25, 2007. Because the satellite is in an Earth-trailing orbit and is further from the Moon than the Earth is, the Moon appears smaller than the Sun.[79]
The first satellites designed to observe the Sun were NASA's Pioneers 5, 6, 7, 8 and 9, which were launched between 1959 and 1968. These probes orbited the Sun at a distance similar to that of the Earth, and made the first detailed measurements of the solar wind and the solar magnetic field. Pioneer 9 operated for a particularly long period of time, transmitting data until 1987.[80]
In the 1970s, Helios 1 and the Skylab Apollo Telescope Mount provided scientists with significant new data on solar wind and the solar corona. The Helios 1 satellite was a joint U.S.-German probe that studied the solar wind from an orbit carrying the spacecraft inside Mercury's orbit at perihelion. The Skylab space station, launched by NASA in 1973, included a solar observatory module called the Apollo Telescope Mount that was operated by astronauts resident on the station. Skylab made the first time-resolved observations of the solar transition region and of ultraviolet emissions from the solar corona. Discoveries included the first observations of coronal mass ejections, then called "coronal transients", and of coronal holes, now known to be intimately associated with the solar wind.
In 1980, the Solar Maximum Mission was launched by NASA. This spacecraft was designed to observe gamma rays, X-rays and UV radiation from solar flares during a time of high solar activity and solar luminosity. Just a few months after launch, however, an electronics failure caused the probe to go into standby mode, and it spent the next three years in this inactive state. In 1984 Space Shuttle Challenger mission STS-41C retrieved the satellite and repaired its electronics before re-releasing it into orbit. The Solar Maximum Mission subsequently acquired thousands of images of the solar corona before re-entering the Earth's atmosphere in June 1989.[81]
Japan's Yohkoh (Sunbeam) satellite, launched in 1991, observed solar flares at X-ray wavelengths. Mission data allowed scientists to identify several different types of flares, and also demonstrated that the corona away from regions of peak activity was much more dynamic and active than had previously been supposed. Yohkoh observed an entire solar cycle but went into standby mode when an annular eclipse in 2001 caused it to lose its lock on the Sun. It was destroyed by atmospheric reentry in 2005.[82]
One of the most important solar missions to date has been the Solar and Heliospheric Observatory, jointly built by the European Space Agency and NASA and launched on 2 December 1995. Originally a two-year mission, SOHO has now operated for over ten years (as of 2007). It has proved so useful that a follow-on mission, the Solar Dynamics Observatory, is planned for launch in 2008. Situated at the Lagrangian point between the Earth and the Sun (at which the gravitational pull from both is equal), SOHO has provided a constant view of the Sun at many wavelengths since its launch. In addition to its direct solar observation, SOHO has enabled the discovery of large numbers of comets, mostly very tiny sungrazing comets which incinerate as they pass the Sun.[83]
All these satellites have observed the Sun from the plane of the ecliptic, and so have only observed its equatorial regions in detail. The Ulysses probe was launched in 1990 to study the Sun's polar regions. It first traveled to Jupiter, to "slingshot" past the planet into an orbit which would take it far above the plane of the ecliptic. Serendipitously, it was well-placed to observe the collision of Comet Shoemaker-Levy 9 with Jupiter in 1994. Once Ulysses was in its scheduled orbit, it began observing the solar wind and magnetic field strength at high solar latitudes, finding that the solar wind from high latitudes was moving at about 750 km/s which was slower than expected, and that there were large magnetic waves emerging from high latitudes which scattered galactic cosmic rays.[84]
Elemental abundances in the photosphere are well known from spectroscopic studies, but the composition of the interior of the Sun is more poorly understood. A solar wind sample return mission, Genesis, was designed to allow astronomers to directly measure the composition of solar material. Genesis returned to Earth in 2004 but was damaged by a crash landing after its parachute failed to deploy on reentry into Earth's atmosphere. Despite severe damage, some usable samples have been recovered from the spacecraft's sample return module and are undergoing analysis.[citation needed]
The Solar Terrestrial Relations Observatory (STEREO) mission was launched in October 2006. Two identical spacecraft were launched into orbits that cause them to (respectively) pull further ahead of and fall gradually behind the Earth. This enables stereoscopic imaging of the Sun and solar phenomena, such as coronal mass ejections.
If one were to observe it from Alpha Centauri, the closest star system, the Sun would appear to be in the constellation Cassiopeia.[citation needed]
Also, the Indian Space Research Organization is planning the "Aditya" mission to the sun.[85]
Observation and eye damage
The Sun as it appears through a camera lens from the surface of Earth
Sunlight is very bright, and looking directly at the Sun with the naked eye for brief periods can be painful, but is not particularly hazardous for normal, non-dilated eyes.[86][87] Looking directly at the Sun causes phosphene visual artifacts and temporary partial blindness. It also delivers about 4 milliwatts of sunlight to the retina, slightly heating it and potentially causing damage in eyes that cannot respond properly to the brightness.[88][89] UV exposure gradually yellows the lens of the eye over a period of years and is thought to contribute to the formation of cataracts, but this depends on general exposure to solar UV, not on whether one looks directly at the Sun.[90] Long-duration viewing of the direct Sun with the naked eye can begin to cause UV-induced, sunburn-like lesions on the retina after about 100 seconds, particularly under conditions where the UV light from the Sun is intense and well focused;[91][92] conditions are worsened by young eyes or new lens implants (which admit more UV than aging natural eyes), Sun angles near the zenith, and observing locations at high altitude.
Viewing the Sun through light-concentrating optics such as binoculars is very hazardous without an appropriate filter that blocks UV and substantially dims the sunlight. An attenuating (ND) filter might not filter UV and so is still dangerous. Unfiltered binoculars can deliver over 500 times as much energy to the retina as using the naked eye, killing retinal cells almost instantly (even though the power per unit area of image on the retina is the same, the heat cannot dissipate fast enough because the image is larger). Even brief glances at the midday Sun through unfiltered binoculars can cause permanent blindness.[93] One way to view the Sun safely is by projecting its image onto a screen using a telescope and eyepiece without cemented elements. This should only be done with a small refracting telescope (or binoculars) with a clean eyepiece. Other kinds of telescopes can be damaged by this procedure.
Partial solar eclipses are hazardous to view because the eye's pupil is not adapted to the unusually high visual contrast: the pupil dilates according to the total amount of light in the field of view, not by the brightest object in the field. During partial eclipses most sunlight is blocked by the Moon passing in front of the Sun, but the uncovered parts of the photosphere have the same surface brightness as during a normal day. In the overall gloom, the pupil expands from ~2 mm to ~6 mm, and each retinal cell exposed to the solar image receives about ten times more light than it would looking at the non-eclipsed Sun. This can damage or kill those cells, resulting in small permanent blind spots for the viewer.[94] The hazard is insidious for inexperienced observers and for children, because there is no perception of pain: it is not immediately obvious that one's vision is being destroyed.
During sunrise and sunset, sunlight is attenuated due to Rayleigh scattering and Mie scattering from a particularly long passage through Earth's atmosphere and the direct Sun is sometimes faint enough to be viewed comfortably with the naked eye or safely with optics (provided there is no risk of bright sunlight suddenly appearing through a break between clouds). Hazy conditions, atmospheric dust, and high humidity contribute to this atmospheric attenuation.
Attenuating filters to view the Sun should be specifically designed for that use: some improvised filters pass UV or IR rays that can harm the eye at high brightness levels. Filters on telescopes or binoculars should be on the objective lens or aperture, never on the eyepiece, because eyepiece filters can suddenly crack or shatter due to high heat loads from the absorbed sunlight. Welding glass #14 is an acceptable solar filter, but "black" exposed photographic film is not (it passes too much infrared).
In cultural history
Like other natural phenomena, the Sun has been an object of veneration in many cultures throughout human history, and was the source of the word Sunday The Latin name Sol (pronounced /sɒl/ in English) is widely known but not common in general English language use, although the adjectival form is the related word solar. "Sol" is rarely used in scientific circles, and is not considered an official English name of the Sun; it makes no appearances in common reference sources.[95] "Sol" is more likely to be encountered in science fiction writing (Star Trek in particular) as a formal name for the specific star, since in many stories the use of "sun" as a generic term for the local star would be ambiguous. By extension, the Solar System is often referred to in science fiction as the "Sol System".
The term sol is used by planetary astronomers to refer to the duration of a solar day on another planet, such as Mars.[96] A mean Earth solar day is approximately 24 hours, while a mean Martian sol, is 24 hours, 39 minutes, and 35.244 seconds.[97] See also Timekeeping on Mars.
Sol is also the modern word for "Sun" in Portuguese, Spanish, Icelandic, Danish, Norwegian, Swedish, Leonese, Catalan and Galician. The Peruvian currency nuevo sol is named after the Sun (in Spanish), like its successor (and predecessor, in use 1985–1991) the Inti (in Quechua). In Persian, sol means "solar year".
In East Asia the Sun is represented by the symbol 日 (Chinese pinyin rì or Japanese nichi) or 太阳(simplified)/太陽(traditional) (pinyin tài yáng or Japanese taiyō). In Vietnamese these Han words are called nhật and thái dương respectively, while the native Vietnamese word mặt trời literally means "face of the heavens". The Moon and the Sun are associated with the yin and yang where the Moon represents yin and the Sun yang as dynamic opposites.
Muon
From Wikipedia, the free encyclopedia
Jump to: navigation, search
Muon
The Moon's cosmic ray shadow, as seen in secondary muons detected 700m below ground, at the Soudan II detector.
Composition: Elementary particle
Family: Fermion
Group: Lepton
Generation: Second
Interaction: Gravity, Electromagnetic,
Weak
Antiparticle: μ+ (Antimuon)
Theorized: —
Discovered: Carl D. Anderson (1936)
Symbol(s): μ−
Mass: 105.658 369(9) MeV/c2
Mean lifetime: 2.197 03(4) × 10−6 s[1]
Electric charge: −1 e
Color charge: None
Spin: 1⁄2
The muon (from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with negative electric charge and a spin of 1⁄2. Together with the electron, the tauon, and the three neutrinos, it is classified as a lepton. It has a prolonged mean lifetime of 2.2 μs, second only to that of the neutron. Like all elementary particles, the muon has corresponding antiparticle of opposite charge but equal mass and spin: the antimuon (also called a positive muon). Muons are denoted by μ− and antimuons by μ+. Muons were sometimes referred to as mu mesons in the past, even though they are not classified as mesons by modern particle physicists (see History).
Muons have a mass of 105.7 MeV/c2, which is about 200 times the mass of the electrons. Since their interactions are very similar to those of the electron, a muon can be thought of as a much heavier version of the electron. Due to their greater mass, muons do not emit as much bremsstrahlung radiation; consequently, they are highly penetrating, much more so than electrons.
As with the case of the other charged leptons, the muon has an associated muon neutrino. Muon neutrinos are denoted by νμ.
Contents
[hide]
* 1 History
* 2 Muon sources
* 3 Muon decay
* 4 Muonic atoms
* 5 Anomalous magnetic dipole moment
* 6 See also
* 7 References
* 8 External links
[edit] History
Muons were discovered by Carl D. Anderson in 1936 while he studied cosmic radiation. He had noticed particles that curved in a manner distinct from that of electrons and other known particles, when passed through a magnetic field. In particular, these new particles were negatively charged but curved to a smaller degree than electrons, but more sharply than protons, for particles of the same velocity. It was assumed that the magnitude of their negative electric charge was equal to that of the electron, and so to account for the difference in curvature, it was supposed that these particles were of intermediate mass (lying somewhere between that of an electron and that of a proton). The discovery of the muon seemed so incongruous and surprising at the time that Nobel laureate I. I. Rabi famously quipped, "Who ordered that?"
For this reason, Anderson initially called the new particle a mesotron, adopting the prefix meso- from the Greek word for "mid-". Shortly thereafter, additional particles of intermediate mass were discovered, and the more general term meson was adopted to refer to any such particle. Faced with the need to differentiate between different types of mesons, the mesotron was in 1947 renamed the mu meson (with the Greek letter μ (mu) used to approximate the sound of the Latin letter m).
However, it was soon found that the mu meson significantly differed from other mesons; for example, its decay products included a neutrino and an antineutrino, rather than just one or the other, as was observed in other mesons. Other mesons were eventually understood to be hadrons—that is, particles made of quarks—and thus subject to the residual strong force. In the quark model, a meson is composed of exactly two quarks (a quark and antiquark), unlike baryons which are composed of three quarks. Mu mesons, however, were found to be fundamental particles (leptons) like electrons, with no quark structure. Thus, mu mesons were not mesons at all (in the new sense and use of the term meson), and so the term mu meson was abandoned, and replaced with the modern term muon.
Since the production of muons requires an available center of momentum frame energy of over 105 MeV, neither ordinary radioactive decay events nor nuclear fission and fusion events (such as those occurring in nuclear reactors and nuclear weapons) are energetic enough to produce muons. Only nuclear fission produces single-nuclear-event energies in this range, but due to conservation constraints, muons are not produced.
On earth, all naturally occurring muons are apparently created by cosmic rays, which consist mostly of protons, many arriving from deep space at very high energy.
About 10,000 muons reach every square meter of the earth's surface a minute; these charged particles form as by-products of cosmic rays colliding with molecules in the upper atmosphere. Traveling at relativistic speeds, muons can penetrate tens of meters into rocks and other matter before attenuating as a result of absorption or deflection by other atoms.
—Mark Wolvertron, science writer, Scientific American magazine, September 2007, page 26 "Muons for Peace"[2]
When a cosmic ray proton impacts atomic nuclei of air atoms in the upper atmosphere, pions are created. These decay within a relatively short distance (meters) into muons (the pion's preferred decay product), and neutrinos. The muons from these high energy cosmic rays, generally continuing essentially in the same direction as the original proton, do so at very high velocities. Although their lifetime without relativistic effects would allow a half-survival distance of only about 0.66 km at most, the time dilation effect of special relativity allows cosmic ray secondary muons to survive the flight to the earth's surface. Indeed, since muons are unusually penetrative of ordinary matter, like neutrinos, they are also detectable deep underground and underwater, where they form a major part of the natural background ionizing radiation. Like cosmic rays, as noted, this secondary muon radiation is also directional. See the illustration above of the moon's cosmic ray shadow, detected when 700 m of soil and rock filters secondary radiation, but allows enough muons to form a crude image of the moon, in a directional detector.
The same nuclear reaction described above (i.e., hadron-hadron impacts to produce pion beams, which then quickly decay to muon beams over short distances) is used by particle physicists to produce muon beams, such as the beam used for the muon g-2 gyromagnetic ratio experiment (see link below). In naturally-produced muons, the very high-energy protons to begin the process are thought to originate from acceleration by electromagnetic fields over long distances between stars or galaxies, in a manner somewhat analogous to the mechanism of proton acceleration used in laboratory particle accelerators.
[edit] Muon decay
See also: Michel parameters
The most common decay of the muon
Muons are unstable elementary particles and are heavier than electrons and neutrinos but lighter than all other matter particles. They decay via the weak interaction to an electron, two neutrinos and possibly other particles with a net charge of zero. Nearly all of the time, they decay into an electron, an electron-antineutrino, and a muon-neutrino. Antimuons decay to a positron, an electron-neutrino, and a muon-antineutrino:
\mu^-\to e^- + \bar\nu_e + \nu_\mu,~~~\mu^+\to e^+ + \nu_e + \bar\nu_\mu.
The mean lifetime of the (positive) muon is 2.197 019 ± 0.000 021 μs[3]. The equality of the muon and anti-muon lifetimes has been established to better than one part in 104.
The tree level muon decay width is
\Gamma=\frac{G_F^2 m_\mu^5}{192\pi^3}I\left(\frac{m_e^2}{m_\mu^2}\right), where I(x)=1-8x+12x^2\ln\left(\frac{1}{x}\right)+8x^3-x^4.
A photon or electron-positron pair is also present in the decay products about 1.4% of the time.
The decay distributions of the electron in muon decays have been parametrized using the so-called Michel parameters. The values of these four parameters are predicted unambiguously in the Standard Model of particle physics, thus muon decays represent an excellent laboratory to test the space-time structure of the weak interaction. No deviation from the Standard Model predictions has yet been found.
Certain neutrino-less decay modes are kinematically allowed but forbidden in the Standard Model. Examples, forbidden by lepton flavour conservation, are
\mu^-\to e^- + \gamma and \mu^-\to e^- + e^+ + e^-.
Observation of such decay modes would constitute clear evidence for physics beyond the Standard Model (BSM). Upper limits for the branching fractions of such decay modes are in the range 10−11 to 10−12.
[edit] Muonic atoms
The muon was the first elementary particle discovered that does not appear in ordinary atoms. Negative muons can, however, form muonic atoms by replacing an electron in ordinary atoms. Muonic atoms are much smaller than typical atoms because the larger mass of the muon gives it a smaller ground-state wavefunction than the electron.
A positive muon, when stopped in ordinary matter, can also bind an electron and form an exotic atom known as muonium (Mu) atom, in which the muon acts as the nucleus. The positive muon, in this context, can be considered a pseudo-isotope of hydrogen with one ninth of the mass of the proton. Because the reduced mass of muonium, and hence its Bohr radius, is very close to that of hydrogen, this short lived "atom" behaves chemically — to a first approximation — like hydrogen, deuterium and tritium.
[edit] Anomalous magnetic dipole moment
The anomalous magnetic dipole moment is the difference between the experimentally observed value of the magnetic dipole moment and the theoretical value predicted by the Dirac equation. The measurement and prediction of this value is very important in the precision tests of QED (quantum electrodynamics). The E821 experiment at Brookhaven National Laboratory (BNL) studied the precession of muon and anti-muon in a constant external magnetic field as they circulated in a confining storage ring. The E821 Experiment reported the following average value (from the July 2007 review by Particle Data Group)
a = \frac{g-2}{2} = 0.00116592080(54)(33)
where the first errors are statistical and the second systematic.
The difference between the g-factors of the muon and the electron is due to their difference in mass. Because of the muon's larger mass, contributions to the theoretical calculation of its anomalous magnetic dipole moment from Standard Model weak interactions and from contributions involving hadrons are important at the current level of precision, whereas these effects are not important for the electron. The muon's anomalous magnetic dipole moment is also sensitive to contributions from new physics beyond the Standard Model, such as supersymmetry. For this reason, the muon's anomalous magnetic moment is normally used as a probe for new physics beyond the Standard Model rather than as a test of QED (Phys.Lett. B649, 173 (2007)).
Jump to: navigation, search
Muon
The Moon's cosmic ray shadow, as seen in secondary muons detected 700m below ground, at the Soudan II detector.
Composition: Elementary particle
Family: Fermion
Group: Lepton
Generation: Second
Interaction: Gravity, Electromagnetic,
Weak
Antiparticle: μ+ (Antimuon)
Theorized: —
Discovered: Carl D. Anderson (1936)
Symbol(s): μ−
Mass: 105.658 369(9) MeV/c2
Mean lifetime: 2.197 03(4) × 10−6 s[1]
Electric charge: −1 e
Color charge: None
Spin: 1⁄2
The muon (from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with negative electric charge and a spin of 1⁄2. Together with the electron, the tauon, and the three neutrinos, it is classified as a lepton. It has a prolonged mean lifetime of 2.2 μs, second only to that of the neutron. Like all elementary particles, the muon has corresponding antiparticle of opposite charge but equal mass and spin: the antimuon (also called a positive muon). Muons are denoted by μ− and antimuons by μ+. Muons were sometimes referred to as mu mesons in the past, even though they are not classified as mesons by modern particle physicists (see History).
Muons have a mass of 105.7 MeV/c2, which is about 200 times the mass of the electrons. Since their interactions are very similar to those of the electron, a muon can be thought of as a much heavier version of the electron. Due to their greater mass, muons do not emit as much bremsstrahlung radiation; consequently, they are highly penetrating, much more so than electrons.
As with the case of the other charged leptons, the muon has an associated muon neutrino. Muon neutrinos are denoted by νμ.
Contents
[hide]
* 1 History
* 2 Muon sources
* 3 Muon decay
* 4 Muonic atoms
* 5 Anomalous magnetic dipole moment
* 6 See also
* 7 References
* 8 External links
[edit] History
Muons were discovered by Carl D. Anderson in 1936 while he studied cosmic radiation. He had noticed particles that curved in a manner distinct from that of electrons and other known particles, when passed through a magnetic field. In particular, these new particles were negatively charged but curved to a smaller degree than electrons, but more sharply than protons, for particles of the same velocity. It was assumed that the magnitude of their negative electric charge was equal to that of the electron, and so to account for the difference in curvature, it was supposed that these particles were of intermediate mass (lying somewhere between that of an electron and that of a proton). The discovery of the muon seemed so incongruous and surprising at the time that Nobel laureate I. I. Rabi famously quipped, "Who ordered that?"
For this reason, Anderson initially called the new particle a mesotron, adopting the prefix meso- from the Greek word for "mid-". Shortly thereafter, additional particles of intermediate mass were discovered, and the more general term meson was adopted to refer to any such particle. Faced with the need to differentiate between different types of mesons, the mesotron was in 1947 renamed the mu meson (with the Greek letter μ (mu) used to approximate the sound of the Latin letter m).
However, it was soon found that the mu meson significantly differed from other mesons; for example, its decay products included a neutrino and an antineutrino, rather than just one or the other, as was observed in other mesons. Other mesons were eventually understood to be hadrons—that is, particles made of quarks—and thus subject to the residual strong force. In the quark model, a meson is composed of exactly two quarks (a quark and antiquark), unlike baryons which are composed of three quarks. Mu mesons, however, were found to be fundamental particles (leptons) like electrons, with no quark structure. Thus, mu mesons were not mesons at all (in the new sense and use of the term meson), and so the term mu meson was abandoned, and replaced with the modern term muon.
Since the production of muons requires an available center of momentum frame energy of over 105 MeV, neither ordinary radioactive decay events nor nuclear fission and fusion events (such as those occurring in nuclear reactors and nuclear weapons) are energetic enough to produce muons. Only nuclear fission produces single-nuclear-event energies in this range, but due to conservation constraints, muons are not produced.
On earth, all naturally occurring muons are apparently created by cosmic rays, which consist mostly of protons, many arriving from deep space at very high energy.
About 10,000 muons reach every square meter of the earth's surface a minute; these charged particles form as by-products of cosmic rays colliding with molecules in the upper atmosphere. Traveling at relativistic speeds, muons can penetrate tens of meters into rocks and other matter before attenuating as a result of absorption or deflection by other atoms.
—Mark Wolvertron, science writer, Scientific American magazine, September 2007, page 26 "Muons for Peace"[2]
When a cosmic ray proton impacts atomic nuclei of air atoms in the upper atmosphere, pions are created. These decay within a relatively short distance (meters) into muons (the pion's preferred decay product), and neutrinos. The muons from these high energy cosmic rays, generally continuing essentially in the same direction as the original proton, do so at very high velocities. Although their lifetime without relativistic effects would allow a half-survival distance of only about 0.66 km at most, the time dilation effect of special relativity allows cosmic ray secondary muons to survive the flight to the earth's surface. Indeed, since muons are unusually penetrative of ordinary matter, like neutrinos, they are also detectable deep underground and underwater, where they form a major part of the natural background ionizing radiation. Like cosmic rays, as noted, this secondary muon radiation is also directional. See the illustration above of the moon's cosmic ray shadow, detected when 700 m of soil and rock filters secondary radiation, but allows enough muons to form a crude image of the moon, in a directional detector.
The same nuclear reaction described above (i.e., hadron-hadron impacts to produce pion beams, which then quickly decay to muon beams over short distances) is used by particle physicists to produce muon beams, such as the beam used for the muon g-2 gyromagnetic ratio experiment (see link below). In naturally-produced muons, the very high-energy protons to begin the process are thought to originate from acceleration by electromagnetic fields over long distances between stars or galaxies, in a manner somewhat analogous to the mechanism of proton acceleration used in laboratory particle accelerators.
[edit] Muon decay
See also: Michel parameters
The most common decay of the muon
Muons are unstable elementary particles and are heavier than electrons and neutrinos but lighter than all other matter particles. They decay via the weak interaction to an electron, two neutrinos and possibly other particles with a net charge of zero. Nearly all of the time, they decay into an electron, an electron-antineutrino, and a muon-neutrino. Antimuons decay to a positron, an electron-neutrino, and a muon-antineutrino:
\mu^-\to e^- + \bar\nu_e + \nu_\mu,~~~\mu^+\to e^+ + \nu_e + \bar\nu_\mu.
The mean lifetime of the (positive) muon is 2.197 019 ± 0.000 021 μs[3]. The equality of the muon and anti-muon lifetimes has been established to better than one part in 104.
The tree level muon decay width is
\Gamma=\frac{G_F^2 m_\mu^5}{192\pi^3}I\left(\frac{m_e^2}{m_\mu^2}\right), where I(x)=1-8x+12x^2\ln\left(\frac{1}{x}\right)+8x^3-x^4.
A photon or electron-positron pair is also present in the decay products about 1.4% of the time.
The decay distributions of the electron in muon decays have been parametrized using the so-called Michel parameters. The values of these four parameters are predicted unambiguously in the Standard Model of particle physics, thus muon decays represent an excellent laboratory to test the space-time structure of the weak interaction. No deviation from the Standard Model predictions has yet been found.
Certain neutrino-less decay modes are kinematically allowed but forbidden in the Standard Model. Examples, forbidden by lepton flavour conservation, are
\mu^-\to e^- + \gamma and \mu^-\to e^- + e^+ + e^-.
Observation of such decay modes would constitute clear evidence for physics beyond the Standard Model (BSM). Upper limits for the branching fractions of such decay modes are in the range 10−11 to 10−12.
[edit] Muonic atoms
The muon was the first elementary particle discovered that does not appear in ordinary atoms. Negative muons can, however, form muonic atoms by replacing an electron in ordinary atoms. Muonic atoms are much smaller than typical atoms because the larger mass of the muon gives it a smaller ground-state wavefunction than the electron.
A positive muon, when stopped in ordinary matter, can also bind an electron and form an exotic atom known as muonium (Mu) atom, in which the muon acts as the nucleus. The positive muon, in this context, can be considered a pseudo-isotope of hydrogen with one ninth of the mass of the proton. Because the reduced mass of muonium, and hence its Bohr radius, is very close to that of hydrogen, this short lived "atom" behaves chemically — to a first approximation — like hydrogen, deuterium and tritium.
[edit] Anomalous magnetic dipole moment
The anomalous magnetic dipole moment is the difference between the experimentally observed value of the magnetic dipole moment and the theoretical value predicted by the Dirac equation. The measurement and prediction of this value is very important in the precision tests of QED (quantum electrodynamics). The E821 experiment at Brookhaven National Laboratory (BNL) studied the precession of muon and anti-muon in a constant external magnetic field as they circulated in a confining storage ring. The E821 Experiment reported the following average value (from the July 2007 review by Particle Data Group)
a = \frac{g-2}{2} = 0.00116592080(54)(33)
where the first errors are statistical and the second systematic.
The difference between the g-factors of the muon and the electron is due to their difference in mass. Because of the muon's larger mass, contributions to the theoretical calculation of its anomalous magnetic dipole moment from Standard Model weak interactions and from contributions involving hadrons are important at the current level of precision, whereas these effects are not important for the electron. The muon's anomalous magnetic dipole moment is also sensitive to contributions from new physics beyond the Standard Model, such as supersymmetry. For this reason, the muon's anomalous magnetic moment is normally used as a probe for new physics beyond the Standard Model rather than as a test of QED (Phys.Lett. B649, 173 (2007)).
Atom
From Wikipedia, the free encyclopedia
Jump to: navigation, search
For other uses, see Atom (disambiguation).
Semi-protected
Helium atom
Helium atom ground state.
An illustration of the helium atom, depicting the nucleus (pink) and the electron cloud distribution (black). The nucleus (upper right) is in reality spherically symmetric, although for more complicated nuclei this is not always the case. The black bar is one ångström, equal to 10−10 m or 100,000 fm.
Classification
Smallest recognized division of a chemical element
Properties
Mass range: 1.67 × 10−27 to 4.52 × 10−25 kg
Electric charge: zero (neutral), or ion charge
Diameter range: 62 pm (He) to 520 pm (Cs) (data page)
Components: Electrons and a compact nucleus of protons and neutrons
The atom is a basic unit of matter consisting of a dense, central nucleus surrounded by a cloud of negatively charged electrons. The atomic nucleus contains a mix of positively charged protons and electrically neutral neutrons (except in the case of Hydrogen-1, which is the only stable nuclide with no neutron). The electrons of an atom are bound to the nucleus by the electromagnetic force. Likewise, a group of atoms can remain bound to each other, forming a molecule. An atom containing an equal number of protons and electrons is electrically neutral, otherwise it has a positive or negative charge and is an ion. An atom is classified according to the number of protons and neutrons in its nucleus: the number of protons determines the chemical element, and the number of neutrons determine the isotope of the element.
The name atom comes from the Greek ἄτομος/átomos, α-τεμνω, which means uncuttable, something that cannot be divided further. The concept of an atom as an indivisible component of matter was first proposed by early Indian and Greek philosophers. In the 17th and 18th centuries, chemists provided a physical basis for this idea by showing that certain substances could not be further broken down by chemical methods. During the late 19th and early 20th centuries, physicists discovered subatomic components and structure inside the atom, thereby demonstrating that the 'atom' was not indivisible. The principles of quantum mechanics were used to successfully model the atom.[1][2]
Relative to everyday experience, atoms are minuscule objects with proportionately tiny masses. Atoms can only be observed individually using special instruments such as the scanning tunneling microscope. Over 99.9% of an atom's mass is concentrated in the nucleus,[note 1] with protons and neutrons having roughly equal mass. Each element has at least one isotope with unstable nuclei that can undergo radioactive decay. This can result in a transmutation that changes the number of protons or neutrons in a nucleus.[3] Electrons that are bound to atoms possess a set of stable energy levels, or orbitals, and can undergo transitions between them by absorbing or emitting photons that match the energy differences between the levels. The electrons determine the chemical properties of an element, and strongly influence an atom's magnetic properties.
Contents
[hide]
* 1 History
* 2 Components
o 2.1 Subatomic particles
o 2.2 Nucleus
o 2.3 Electron cloud
* 3 Properties
o 3.1 Nuclear properties
o 3.2 Mass
o 3.3 Size
o 3.4 Radioactive decay
o 3.5 Magnetic moment
o 3.6 Energy levels
o 3.7 Valence and bonding behavior
o 3.8 States
* 4 Identification
* 5 Origin and current state
o 5.1 Nucleosynthesis
o 5.2 Earth
o 5.3 Rare and theoretical forms
* 6 See also
* 7 Notes
* 8 References
o 8.1 Book references
* 9 External links
History
Main articles: Atomic theory and Atomism
The concept that matter is composed of discrete units and cannot be divided into arbitrarily tiny quantities has been around for millennia, but these ideas were founded in abstract, philosophical reasoning rather than experimentation and empirical observation. The nature of atoms in philosophy varied considerably over time and between cultures and schools, and often had spiritual elements. Nevertheless, the basic idea of the atom was adopted by scientists thousands of years later because it elegantly explained new discoveries in the field of chemistry.[4]
The earliest references to the concept of atoms date back to ancient India in the 6th century BCE.[5] The Nyaya and Vaisheshika schools developed elaborate theories of how atoms combined into more complex objects (first in pairs, then trios of pairs).[6] The references to atoms in the West emerged a century later from Leucippus whose student, Democritus, systemized his views. In approximately 450 BCE, Democritus coined the term átomos (Greek: ἄτομος), which means "uncuttable" or "the smallest indivisible particle of matter", i.e., something that cannot be divided. Although the Indian and Greek concepts of the atom were based purely on philosophy, modern science has retained the name coined by Democritus.[4]
Further progress in the understanding of atoms did not occur until the science of chemistry began to develop. In 1661, natural philosopher Robert Boyle published The Sceptical Chymist in which he argued that matter was composed of various combinations of different "corpuscules" or atoms, rather than the classical elements of air, earth, fire and water.[7] In 1789 the term element was defined by the French nobleman and scientific researcher Antoine Lavoisier to mean basic substances that could not be further broken down by the methods of chemistry.[8]
Various atoms and molecules as depicted in John Dalton's A New System of Chemical Philosophy (1808).
In 1803, English instructor and natural philosopher John Dalton used the concept of atoms to explain why elements always react in a ratio of small whole numbers—the law of multiple proportions—and why certain gases dissolve better in water than others. He proposed that each element consists of atoms of a single, unique type, and that these atoms can join together to form chemical compounds.[9][10]
Additional validation of particle theory (and by extension atomic theory) occurred in 1827 when botanist Robert Brown used a microscope to look at dust grains floating in water and discovered that they moved about erratically—a phenomenon that became known as "Brownian motion". J. Desaulx suggested in 1877 that the phenomenon was caused by the thermal motion of water molecules, and in 1905 Albert Einstein produced the first mathematical analysis of the motion.[11][12][13] French physicist Jean Perrin used Einstein's work to experimentally determine the mass and dimensions of atoms, thereby conclusively verifying Dalton's atomic theory.[14]
The physicist J. J. Thomson, through his work on cathode rays in 1897, discovered the electron and its subatomic nature, which destroyed the concept of atoms as being indivisible units.[15] Thomson believed that the electrons were distributed throughout the atom, with their charge balanced by the presence of a uniform sea of positive charge (the plum pudding model).
However, in 1909, researchers under the direction of physicist Ernest Rutherford bombarded a sheet of gold foil with helium ions and discovered that a small percentage were deflected through much larger angles than was predicted using Thomson's proposal. Rutherford interpreted the gold foil experiment as suggesting that the positive charge of an atom and most of its mass was concentrated in a nucleus at the center of the atom (the Rutherford model), with the electrons orbiting it like planets around a sun. Positively charged helium ions passing close to this dense nucleus would then be deflected away at much sharper angles.[16]
While experimenting with the products of radioactive decay, in 1913 radiochemist Frederick Soddy discovered that there appeared to be more than one type of atom at each position on the periodic table.[17] The term isotope was coined by Margaret Todd as a suitable name for different atoms that belong to the same element. J.J. Thomson created a technique for separating atom types through his work on ionized gases, which subsequently led to the discovery of stable isotopes.[18]
A Bohr model of the hydrogen atom, showing an electron jumping between fixed orbits and emitting a photon of energy with a specific frequency.
Meanwhile, in 1913, physicist Niels Bohr revised Rutherford's model by suggesting that the electrons were confined into clearly defined, quantized orbits, and could jump between these, but could not freely spiral inward or outward in intermediate states.[19] An electron must absorb or emit specific amounts of energy to transition between these fixed orbits. When the light from a heated material was passed through a prism, it produced a multi-colored spectrum. The appearance of fixed lines in this spectrum was successfully explained by the orbital transitions.[20]
Chemical bonds between atoms were now explained, by Gilbert Newton Lewis in 1916, as the interactions between their constituent electrons.[21] As the chemical properties of the elements were known to largely repeat themselves according to the periodic law,[22] in 1919 the American chemist Irving Langmuir suggested that this could be explained if the electrons in an atom were connected or clustered in some manner. Groups of electrons were thought to occupy a set of electron shells about the nucleus.[23]
The Stern–Gerlach experiment of 1922 provided further evidence of the quantum nature of the atom. When a beam of silver atoms was passed through a specially-shaped magnetic field, the beam was split based on the direction of an atom's angular momentum, or spin. As this direction is random, the beam could be expected to spread into a line. Instead, the beam was split into two parts, depending on whether the atomic spin was oriented up or down.[24]
In 1926, Erwin Schrödinger, using Louis de Broglie's 1924 proposal that particles behave to an extent like waves, developed a mathematical model of the atom that described the electrons as three-dimensional waveforms, rather than point particles. A consequence of using waveforms to describe electrons is that it is mathematically impossible to obtain precise values for both the position and momentum of a particle at the same time; this became known as the uncertainty principle, formulated by Werner Heisenberg in 1926. In this concept, for each measurement of a position one could only obtain a range of probable values for momentum, and vice versa. Although this model was difficult to visualize, it was able to explain observations of atomic behavior that previous models could not, such as certain structural and spectral patterns of atoms larger than hydrogen. Thus, the planetary model of the atom was discarded in favor of one that described atomic orbital zones around the nucleus where a given electron is most likely to exist.[25][26]
Schematic diagram of a simple mass spectrometer.
The development of the mass spectrometer allowed the exact mass of atoms to be measured. The device uses a magnet to bend the trajectory of a beam of ions, and the amount of deflection is determined by the ratio of an atom's mass to its charge. The chemist Francis William Aston used this instrument to demonstrate that isotopes had different masses. The mass of these isotopes varied by integer amounts, called the whole number rule.[27] The explanation for these different atomic isotopes awaited the discovery of the neutron, a neutral-charged particle with a mass similar to the proton, by the physicist James Chadwick in 1932. Isotopes were then explained as elements with the same number of protons, but different numbers of neutrons within the nucleus.[28]
In the 1950s, the development of improved particle accelerators and particle detectors allowed scientists to study the impacts of atoms moving at high energies.[29] Neutrons and protons were found to be hadrons, or composites of smaller particles called quarks. Standard models of nuclear physics were developed that successfully explained the properties of the nucleus in terms of these sub-atomic particles and the forces that govern their interactions.[30]
Around 1985, Steven Chu and co-workers at Bell Labs developed a technique for lowering the temperatures of atoms using lasers. In the same year, a team led by William D. Phillips managed to contain atoms of sodium in a magnetic trap. The combination of these two techniques and a method based on the Doppler effect, developed by Claude Cohen-Tannoudji and his group, allows small numbers of atoms to be cooled to several microkelvin. This allows the atoms to be studied with great precision, and later led to the discovery of Bose-Einstein condensation.[31]
Historically, single atoms have been prohibitively small for scientific applications. Recently, devices have been constructed that use a single metal atom connected through organic ligands to construct a single electron transistor.[32] Experiments have been carried out by trapping and slowing single atoms using laser cooling in a cavity to gain a better physical understanding of matter.[33]
Components
Subatomic particles
Main article: Subatomic particle
Though the word atom originally denoted a particle that cannot be cut into smaller particles, in modern scientific usage the atom is composed of various subatomic particles. The constituent particles of an atom are the electron, the proton and the neutron. However, the hydrogen-1 atom has no neutrons and a positive hydrogen ion has no electrons.
The electron is by far the least massive of these particles at 9.11 × 10−31 kg, with a negative electrical charge and a size that is too small to be measured using available techniques.[34] Protons have a positive charge and a mass 1,836 times that of the electron, at 1.6726 × 10−27 kg, although this can be reduced by changes to the energy binding the proton into an atom. Neutrons have no electrical charge and have a free mass of 1,839 times the mass of electrons,[35] or 1.6929 × 10−27 kg. Neutrons and protons have comparable dimensions—on the order of 2.5 × 10−15 m—although the 'surface' of these particles is not sharply defined.[36]
In the Standard Model of physics, both protons and neutrons are composed of elementary particles called quarks. The quark belongs to the fermion group of particles, and is one of the two basic constituents of matter—the other being the lepton, of which the electron is an example. There are six types of quarks, each having a fractional electric charge of either +2/3 or −1/3. Protons are composed of two up quarks and one down quark, while a neutron consists of one up quark and two down quarks. This distinction accounts for the difference in mass and charge between the two particles. The quarks are held together by the strong nuclear force, which is mediated by gluons. The gluon is a member of the family of gauge bosons, which are elementary particles that mediate physical forces.[37][38]
Nucleus
Main article: Atomic nucleus
The binding energy needed for a nucleon to escape the nucleus, for various isotopes.
All the bound protons and neutrons in an atom make up a tiny atomic nucleus, and are collectively called nucleons. The radius of a nucleus is approximately equal to \begin{smallmatrix}1.07 \sqrt[3]{A}\end{smallmatrix} fm, where A is the total number of nucleons.[39] This is much smaller than the radius of the atom, which is on the order of 105 fm. The nucleons are bound together by a short-ranged attractive potential called the residual strong force. At distances smaller than 2.5 fm this force is much more powerful than the electrostatic force that causes positively charged protons to repel each other.[40]
Atoms of the same element have the same number of protons, called the atomic number. Within a single element, the number of neutrons may vary, determining the isotope of that element. The total number of protons and neutrons determine the nuclide. The number of neutrons relative to the protons determines the stability of the nucleus, with certain isotopes undergoing radioactive decay.[41]
The neutron and the proton are different types of fermions. The Pauli exclusion principle is a quantum mechanical effect that prohibits identical fermions (such as multiple protons) from occupying the same quantum physical state at the same time. Thus every proton in the nucleus must occupy a different state, with its own energy level, and the same rule applies to all of the neutrons. (This prohibition does not apply to a proton and neutron occupying the same quantum state.)[42]
For atoms with low atomic numbers, a nucleus that has a different number of protons than neutrons can potentially drop to a lower energy state through a radioactive decay that causes the number of protons and neutrons to more closely match. As a result, atoms with roughly matching numbers of protons and neutrons are more stable against decay. However, with increasing atomic number, the mutual repulsion of the protons requires an increasing proportion of neutrons to maintain the stability of the nucleus, which modifies this trend. Thus, there are no stable nuclei with equal proton and neutron numbers above atomic number Z = 20 (calcium); and as Z increases toward the heaviest nuclei, the ratio of neutrons per proton required for stability increases to about 1.5.[42]
Illustration of a nuclear fusion process that forms a deuterium nucleus, consisting of a proton and a neutron, from two protons. A positron (e+)—an antimatter electron—is emitted along with an electron neutrino.
The number of protons and neutrons in the atomic nucleus can be modified, although this can require very high energies because of the strong force. Nuclear fusion occurs when multiple atomic particles join to form a heavier nucleus, such as through the energetic collision of two nuclei. For example, at the core of the Sun protons require energies of 3–10 keV to overcome their mutual repulsion—the coulomb barrier—and fuse together into a single nucleus.[43] Nuclear fission is the opposite process, causing a nucleus to split into two smaller nuclei—usually through radioactive decay. The nucleus can also be modified through bombardment by high energy subatomic particles or photons. If this modifies the number of protons in a nucleus, the atom changes to a different chemical element.[44][45]
If the mass of the nucleus following a fusion reaction is less than the sum of the masses of the separate particles, then the difference between these two values is emitted as energy, as described by Albert Einstein's mass–energy equivalence formula, E = mc2, where m is the mass loss and c is the speed of light. This deficit is the binding energy of the nucleus.[46]
The fusion of two nuclei that have lower atomic numbers than iron and nickel is usually an exothermic process that releases more energy than is required to bring them together.[47] It is this energy-releasing process that makes nuclear fusion in stars a self-sustaining reaction. For heavier nuclei, the total binding energy begins to decrease. That means fusion processes with nuclei that have higher atomic numbers is an endothermic process. These more massive nuclei can not undergo an energy-producing fusion reaction that can sustain the hydrostatic equilibrium of a star.[42]
Electron cloud
Main articles: Electron cloud and Atomic orbital
A potential well, showing the minimum energy V(x) needed to reach each position x. A particle with energy E is constrained to a range of positions between x1 and x2.
The electrons in an atom are attracted to the protons in the nucleus by the electromagnetic force. This force binds the electrons inside an electrostatic potential well surrounding the smaller nucleus, which means that an external source of energy is needed in order for the electron to escape. The closer an electron is to the nucleus, the greater the attractive force. Hence electrons bound near the center of the potential well require more energy to escape than those at greater separations.
Electrons, like other particles, have properties of both a particle and a wave. The electron cloud is a region inside the potential well where each electron forms a type of three-dimensional standing wave—a wave form that does not move relative to the nucleus. This behavior is defined by an atomic orbital, a mathematical function that characterises the probability that an electron will appear to be at a particular location when its position is measured.[48] Only a discrete (or quantized) set of these orbitals exist around the nucleus, as other possible wave patterns will rapidly decay into a more stable form.[49] Orbitals can have one or more ring or node structures, and they differ from each other in size, shape and orientation.[50]
Wave functions of the first five atomic orbitals. The three 2p orbitals each display a single angular node that has an orientation and a minimum at the center.
Each atomic orbital corresponds to a particular energy level of the electron. The electron can change its state to a higher energy level by absorbing a photon with sufficient energy to boost it into the new quantum state. Likewise, through spontaneous emission, an electron in a higher energy state can drop to a lower energy state while radiating the excess energy as a photon. These characteristic energy values, defined by the differences in the energies of the quantum states, are responsible for atomic spectral lines.[49]
The amount of energy needed to remove or add an electron (the electron binding energy) is far less than the binding energy of nucleons. For example, it requires only 13.6 eV to strip a ground-state electron from a hydrogen atom,[51] compared to 2.23 Mev for splitting a deuterium nucleus.[52] Atoms are electrically neutral if they have an equal number of protons and electrons. Atoms that have either a deficit or a surplus of electrons are called ions. Electrons that are farthest from the nucleus may be transferred to other nearby atoms or shared between atoms. By this mechanism, atoms are able to bond into molecules and other types of chemical compounds like ionic and covalent network crystals.[53]
Properties
Nuclear properties
Main articles: Isotope, Stable isotope, and List of elements by nuclear stability
By definition, any two atoms with an identical number of protons in their nuclei belong to the same chemical element. Atoms with equal numbers of protons but a different number of neutrons are different isotopes of the same element. For example, all hydrogen atoms admit exactly one proton, but isotopes exist with no neutrons (hydrogen-1, by far the most common form, sometimes called protium), one neutron (deuterium), two neutrons (tritium) and more than two neutrons.[54] The known elements form a set of atomic numbers from hydrogen with a single proton up to the 118-proton element ununoctium.[55] All known isotopes of elements with atomic numbers greater than 82 are radioactive.[56][57]
About 339 nuclides occur naturally on Earth, of which 269 (about 79%) have not been observed to decay.[58] Of the chemical elements, 80 have one or more stable isotopes. Elements 43, 61, and all elements numbered 83 or higher have no stable isotopes. As a rule, there is, for each atomic number (each element) only a handful of stable isotopes, the average being 3.1 stable isotopes per element which has any stable isotopes. Twenty-seven elements have only a single stable isotope, while the largest number of stable isotopes observed for any element is ten (for the element tin).[59]
Stability of isotopes is affected by the ratio of protons to neutrons, and also by presence of certain "magic numbers" of neutrons or protons which represent closed and filled quantum shells. These quantum shells correspond to a set of energy levels within the shell model of the nucleus; filled shells, such as the filled shell of 50 protons for tin, confers unusual stability on the nuclide. Of the 250 known stable nuclides, only four have both an odd number of protons and odd number of neutrons: 2H, 6Li, 10B and 14N. Also, only four naturally-occurring, radioactive odd-odd nuclides have a half-life over a billion years: 40K, 50V, 138La and 180mTa. Most odd-odd nuclei are highly unstable with respect to beta decay, because the decay products are even-even, and are therefore more strongly bound, due to nuclear pairing effects.[59]
Mass
Main article: Atomic mass
Because the large majority of an atom's mass comes from the protons and neutrons, the total number of these particles in an atom is called the mass number. The mass of an atom at rest is often expressed using the unified atomic mass unit (u), which is also called a Dalton (Da). This unit is defined as a twelfth of the mass of a free neutral atom of carbon-12, which is approximately 1.66 × 10−27 kg.[60] Hydrogen-1, the lightest isotope of hydrogen and the atom with the lowest mass, has an atomic weight of 1.007825 u.[61] An atom has a mass approximately equal to the mass number times the atomic mass unit.[62] The heaviest stable atom is lead-208,[56] with a mass of 207.9766521 u.[63]
As even the most massive atoms are far too light to work with directly, chemists instead use the unit of moles. The mole is defined such that one mole of any element will always have the same number of atoms (about 6.022 × 1023). This number was chosen so that if an element has an atomic mass of 1 u, a mole of atoms of that element will have a mass of 0.001 kg, or 1 gram. Carbon, for example, has an atomic mass of 12 u, so a mole of carbon atoms weighs 0.012 kg.[60]
Size
Main article: Atomic radius
Atoms lack a well-defined outer boundary, so the dimensions are usually described in terms of the distances between two nuclei when the two atoms are joined in a chemical bond. The radius varies with the location of an atom on the atomic chart, the type of chemical bond, the number of neighboring atoms (coordination number) and a quantum mechanical property known as spin.[64] On the periodic table of the elements, atom size tends to increase when moving down columns, but decrease when moving across rows (left to right).[65] Consequently, the smallest atom is helium with a radius of 32 pm, while one of the largest is caesium at 225 pm.[66] These dimensions are thousands of times smaller than the wavelengths of light (400–700 nm) so they can not be viewed using an optical microscope. However, individual atoms can be observed using a scanning tunneling microscope.
Some examples will demonstrate the minuteness of the atom. A typical human hair is about 1 million carbon atoms in width.[67] A single drop of water contains about 2 sextillion (2 × 1021) atoms of oxygen, and twice the number of hydrogen atoms.[68] A single carat diamond with a mass of 2 × 10-4 kg contains about 10 sextillion (1022) atoms of carbon.[note 2] If an apple were magnified to the size of the Earth, then the atoms in the apple would be approximately the size of the original apple.[69]
Radioactive decay
Main article: Radioactive decay
This diagram shows the half-life (T½) in seconds of various isotopes with Z protons and N neutrons.
Every element has one or more isotopes that have unstable nuclei that are subject to radioactive decay, causing the nucleus to emit particles or electromagnetic radiation. Radioactivity can occur when the radius of a nucleus is large compared with the radius of the strong force, which only acts over distances on the order of 1 fm.[70]
The most common forms of radioactive decay are:[71][72]
* Alpha decay is caused when the nucleus emits an alpha particle, which is a helium nucleus consisting of two protons and two neutrons. The result of the emission is a new element with a lower atomic number.
* Beta decay is regulated by the weak force, and results from a transformation of a neutron into a proton, or a proton into a neutron. The first is accompanied by the emission of an electron and an antineutrino, while the second causes the emission of a positron and a neutrino. The electron or positron emissions are called beta particles. Beta decay either increases or decreases the atomic number of the nucleus by one.
* Gamma decay results from a change in the energy level of the nucleus to a lower state, resulting in the emission of electromagnetic radiation. This can occur following the emission of an alpha or a beta particle from radioactive decay.
Other more rare types of radioactive decay include ejection of neutrons or protons or clusters of nucleons from a nucleus, or more than one beta particle, or result (through internal conversion) in production of high-speed electrons which are not beta rays, and high-energy photons which are not gamma rays.
Each radioactive isotope has a characteristic decay time period—the half-life—that is determined by the amount of time needed for half of a sample to decay. This is an exponential decay process that steadily decreases the proportion of the remaining isotope by 50% every half life. Hence after two half-lives have passed only 25% of the isotope will be present, and so forth.[70]
Magnetic moment
Main articles: Electron magnetic dipole moment and Nuclear magnetic moment
Elementary particles possess an intrinsic quantum mechanical property known as spin. This is analogous to the angular momentum of an object that is spinning around its center of mass, although strictly speaking these particles are believed to be point-like and cannot be said to be rotating. Spin is measured in units of the reduced Planck constant (ħ), with electrons, protons and neutrons all having spin ½ ħ, or "spin-½". In an atom, electrons in motion around the nucleus possess orbital angular momentum in addition to their spin, while the nucleus itself possesses angular momentum due to its nuclear spin.[73]
The magnetic field produced by an atom—its magnetic moment—is determined by these various forms of angular momentum, just as a rotating charged object classically produces a magnetic field. However, the most dominant contribution comes from spin. Due to the nature of electrons to obey the Pauli exclusion principle, in which no two electrons may be found in the same quantum state, bound electrons pair up with each other, with one member of each pair in a spin up state and the other in the opposite, spin down state. Thus these spins cancel each other out, reducing the total magnetic dipole moment to zero in some atoms with even number of electrons.[74]
In ferromagnetic elements such as iron, an odd number of electrons leads to an unpaired electron and a net overall magnetic moment. The orbitals of neighboring atoms overlap and a lower energy state is achieved when the spins of unpaired electrons are aligned with each other, a process known as an exchange interaction. When the magnetic moments of ferromagnetic atoms are lined up, the material can produce a measurable macroscopic field. Paramagnetic materials have atoms with magnetic moments that line up in random directions when no magnetic field is present, but the magnetic moments of the individual atoms line up in the presence of a field.[74][75]
The nucleus of an atom can also have a net spin. Normally these nuclei are aligned in random directions because of thermal equilibrium. However, for certain elements (such as xenon-129) it is possible to polarize a significant proportion of the nuclear spin states so that they are aligned in the same direction—a condition called hyperpolarization. This has important applications in magnetic resonance imaging.[76][77]
Energy levels
Main articles: Energy level and Atomic spectral line
When an electron is bound to an atom, it has a potential energy that is inversely proportional to its distance from the nucleus. This is measured by the amount of energy needed to unbind the electron from the atom, and is usually given in units of electronvolts (eV). In the quantum mechanical model, a bound electron can only occupy a set of states centered on the nucleus, and each state corresponds to a specific energy level. The lowest energy state of a bound electron is called the ground state, while an electron at a higher energy level is in an excited state.[78]
In order for an electron to transition between two different states, it must absorb or emit a photon at an energy matching the difference in the potential energy of those levels. The energy of an emitted photon is proportional to its frequency, so these specific energy levels appear as distinct bands in the electromagnetic spectrum.[79] Each element has a characteristic spectrum that can depend on the nuclear charge, subshells filled by electrons, the electromagnetic interactions between the electrons and other factors.[80]
An example of absorption lines in a spectrum.
When a continuous spectrum of energy is passed through a gas or plasma, some of the photons are absorbed by atoms, causing electrons to change their energy level. Those excited electrons that remain bound to their atom will spontaneously emit this energy as a photon, traveling in a random direction, and so drop back to lower energy levels. Thus the atoms behave like a filter that forms a series of dark absorption bands in the energy output. (An observer viewing the atoms from a different direction, which does not include the continuous spectrum in the background, will instead see a series of emission lines from the photons emitted by the atoms.) Spectroscopic measurements of the strength and width of spectral lines allow the composition and physical properties of a substance to be determined.[81]
Close examination of the spectral lines reveals that some display a fine structure splitting. This occurs because of spin-orbit coupling, which is an interaction between the spin and motion of the outermost electron.[82] When an atom is in an external magnetic field, spectral lines become split into three or more components; a phenomenon called the Zeeman effect. This is caused by the interaction of the magnetic field with the magnetic moment of the atom and its electrons. Some atoms can have multiple electron configurations with the same energy level, which thus appear as a single spectral line. The interaction of the magnetic field with the atom shifts these electron configurations to slightly different energy levels, resulting in multiple spectral lines.[83] The presence of an external electric field can cause a comparable splitting and shifting of spectral lines by modifying the electron energy levels, a phenomenon called the Stark effect.[84]
If a bound electron is in an excited state, an interacting photon with the proper energy can cause stimulated emission of a photon with a matching energy level. For this to occur, the electron must drop to a lower energy state that has an energy difference matching the energy of the interacting photon. The emitted photon and the interacting photon will then move off in parallel and with matching phases. That is, the wave patterns of the two photons will be synchronized. This physical property is used to make lasers, which can emit a coherent beam of light energy in a narrow frequency band.[85]
Valence and bonding behavior
Main articles: Valence (chemistry) and Chemical bond
The outermost electron shell of an atom in its uncombined state is known as the valence shell, and the electrons in that shell are called valence electrons. The number of valence electrons determines the bonding behavior with other atoms. Atoms tend to chemically react with each other in a manner that will fill (or empty) their outer valence shells.[86] For example, a transfer of a single electron between atoms is a useful approximation for bonds which form between atoms which have one-electron more than a filled shell, and others which are one-electron short of a full shell, such as occurs in the compound sodium chloride and other chemical ionic salts. However, many elements display multiple valences, or tendencies to share differing numbers of electrons in different compounds. Thus, chemical bonding between these elements takes many forms of electron-sharing that are more than simple electron transfers. Examples include the element carbon and the organic compounds.[87]
The chemical elements are often displayed in a periodic table that is laid out to display recurring chemical properties, and elements with the same number of valence electrons form a group that is aligned in the same column of the table. (The horizontal rows correspond to the filling of a quantum shell of electrons.) The elements at the far right of the table have their outer shell completely filled with electrons, which results in chemically inert elements known as the noble gases.[88][89]
States
Main articles: State of matter and Phase (matter)
Snapshots illustrating the formation of a Bose–Einstein condensate.
Quantities of atoms are found in different states of matter that depend on the physical conditions, such as temperature and pressure. By varying the conditions, materials can transition between solids, liquids, gases and plasmas.[90] Within a state, a material can also exist in different phases. An example of this is solid carbon, which can exist as graphite or diamond.[91]
At temperatures close to absolute zero, atoms can form a Bose–Einstein condensate, at which point quantum mechanical effects, which are normally only observed at the atomic scale, become apparent on a macroscopic scale.[92][93] This super-cooled collection of atoms then behaves as a single super atom, which may allow fundamental checks of quantum mechanical behavior.[94]
Identification
Scanning tunneling microscope image showing the individual atoms making up this gold (100) surface. Reconstruction causes the surface atoms to deviate from the bulk crystal structure and arrange in columns several atoms wide with pits between them.
The scanning tunneling microscope is a device for viewing surfaces at the atomic level. It uses the quantum tunneling phenomenon, which allows particles to pass through a barrier that would normally be insurmountable. Electrons tunnel through the vacuum between two planar metal electrodes, on each of which is an adsorbed atom, providing a tunneling-current density that can be measured. Scanning one atom (taken as the tip) as it moves past the other (the sample) permits plotting of tip displacement versus lateral separation for a constant current. The calculation shows the extent to which scanning-tunneling-microscope images of an individual atom are visible. It confirms that for low bias, the microscope images the space-averaged dimensions of the electron orbitals across closely packed energy levels—the Fermi level local density of states.[95][96]
An atom can be ionized by removing one of its electrons. The electric charge causes the trajectory of an atom to bend when it passes through a magnetic field. The radius by which the trajectory of a moving ion is turned by the magnetic field is determined by the mass of the atom. The mass spectrometer uses this principle to measure the mass-to-charge ratio of ions. If a sample contains multiple isotopes, the mass spectrometer can determine the proportion of each isotope in the sample by measuring the intensity of the different beams of ions. Techniques to vaporize atoms include inductively coupled plasma atomic emission spectroscopy and inductively coupled plasma mass spectrometry, both of which use a plasma to vaporize samples for analysis.[97]
A more area-selective method is electron energy loss spectroscopy, which measures the energy loss of an electron beam within a transmission electron microscope when it interacts with a portion of a sample. The atom-probe tomograph has sub-nanometer resolution in 3-D and can chemically identify individual atoms using time-of-flight mass spectrometry.[98]
Spectra of excited states can be used to analyze the atomic composition of distant stars. Specific light wavelengths contained in the observed light from stars can be separated out and related to the quantized transitions in free gas atoms. These colors can be replicated using a gas-discharge lamp containing the same element.[99] Helium was discovered in this way in the spectrum of the Sun 23 years before it was found on Earth.[100]
Origin and current state
Atoms form about 4% of the total energy density of the observable universe, with an average density of about 0.25 atoms/m3.[101] Within a galaxy such as the Milky Way, atoms have a much higher concentration, with the density of matter in the interstellar medium (ISM) ranging from 105 to 109 atoms/m3.[102] The Sun is believed to be inside the Local Bubble, a region of highly ionized gas, so the density in the solar neighborhood is only about 103 atoms/m3.[103] Stars form from dense clouds in the ISM, and the evolutionary processes of stars result in the steady enrichment of the ISM with elements more massive than hydrogen and helium. Up to 95% of the Milky Way's atoms are concentrated inside stars and the total mass of atoms forms about 10% of the mass of the galaxy.[104] (The remainder of the mass is an unknown dark matter.[105])
Nucleosynthesis
Main article: Nucleosynthesis
Stable protons and electrons appeared one second after the Big Bang. During the following three minutes, Big Bang nucleosynthesis produced most of the helium, lithium, and deuterium in the universe, and perhaps some of the beryllium and boron.[106][107][108] The first atoms (complete with bound electrons) were theoretically created 380,000 years after the Big Bang—an epoch called recombination, when the expanding universe cooled enough to allow electrons to become attached to nuclei.[109] Since then, atomic nuclei have been combined in stars through the process of nuclear fusion to produce elements up to iron.[110]
Isotopes such as lithium-6 are generated in space through cosmic ray spallation.[111] This occurs when a high-energy proton strikes an atomic nucleus, causing large numbers of nucleons to be ejected. Elements heavier than iron were produced in supernovae through the r-process and in AGB stars through the s-process, both of which involve the capture of neutrons by atomic nuclei.[112] Elements such as lead formed largely through the radioactive decay of heavier elements.[113]
Earth
Most of the atoms that make up the Earth and its inhabitants were present in their current form in the nebula that collapsed out of a molecular cloud to form the Solar System. The rest are the result of radioactive decay, and their relative proportion can be used to determine the age of the Earth through radiometric dating.[114][115] Most of the helium in the crust of the Earth (about 99% of the helium from gas wells, as shown by its lower abundance of helium-3) is a product of alpha decay.[116]
There are a few trace atoms on Earth that were not present at the beginning (i.e., not "primordial"), nor are results of radioactive decay. Carbon-14 is continuously generated by cosmic rays in the atmosphere.[117] Some atoms on Earth have been artificially generated either deliberately or as by-products of nuclear reactors or explosions.[118][119] Of the transuranic elements—those with atomic numbers greater than 92—only plutonium and neptunium occur naturally on Earth.[120][121] Transuranic elements have radioactive lifetimes shorter than the current age of the Earth[122] and thus identifiable quantities of these elements have long since decayed, with the exception of traces of plutonium-244 possibly deposited by cosmic dust.[114] Natural deposits of plutonium and neptunium are produced by neutron capture in uranium ore.[123]
The Earth contains approximately 1.33 × 1050 atoms.[124] In the planet's atmosphere, small numbers of independent atoms of noble gases exist, such as argon and neon. The remaining 99% of the atmosphere is bound in the form of molecules, including carbon dioxide and diatomic oxygen and nitrogen. At the surface of the Earth, atoms combine to form various compounds, including water, salt, silicates and oxides. Atoms can also combine to create materials that do not consist of discrete molecules, including crystals and liquid or solid metals.[125][126] This atomic matter forms networked arrangements that lack the particular type of small-scale interrupted order associated with molecular matter.[127]
Rare and theoretical forms
While isotopes with atomic numbers higher than lead (82) are known to be radioactive, an "island of stability" has been proposed for some elements with atomic numbers above 103. These superheavy elements may have a nucleus that is relatively stable against radioactive decay.[128] The most likely candidate for a stable superheavy atom, unbihexium, has 126 protons and 184 neutrons.[129]
Each particle of matter has a corresponding antimatter particle with the opposite electrical charge. Thus, the positron is a positively charged antielectron and the antiproton is a negatively charged equivalent of a proton. When a matter and corresponding antimatter particle meet, they annihilate each other. Because of this, along with an imbalance between the number of matter and antimatter particles, the latter are rare in the universe. (The first causes of this imbalance is not yet fully understood, although the baryogenesis theories may offer an explanation.) As a result, no antimatter atoms have been discovered in nature.[130][131] However, in 1996, antihydrogen, the antimatter counterpart of hydrogen, was synthesized at the CERN laboratory in Geneva.[132][133]
Other exotic atoms have been created by replacing one of the protons, neutrons or electrons with other particles that have the same charge. For example, an electron can be replaced by a more massive muon, forming a muonic atom. These types of atoms can be used to test the fundamental predictions of physics.[134][135][136]
Jump to: navigation, search
For other uses, see Atom (disambiguation).
Semi-protected
Helium atom
Helium atom ground state.
An illustration of the helium atom, depicting the nucleus (pink) and the electron cloud distribution (black). The nucleus (upper right) is in reality spherically symmetric, although for more complicated nuclei this is not always the case. The black bar is one ångström, equal to 10−10 m or 100,000 fm.
Classification
Smallest recognized division of a chemical element
Properties
Mass range: 1.67 × 10−27 to 4.52 × 10−25 kg
Electric charge: zero (neutral), or ion charge
Diameter range: 62 pm (He) to 520 pm (Cs) (data page)
Components: Electrons and a compact nucleus of protons and neutrons
The atom is a basic unit of matter consisting of a dense, central nucleus surrounded by a cloud of negatively charged electrons. The atomic nucleus contains a mix of positively charged protons and electrically neutral neutrons (except in the case of Hydrogen-1, which is the only stable nuclide with no neutron). The electrons of an atom are bound to the nucleus by the electromagnetic force. Likewise, a group of atoms can remain bound to each other, forming a molecule. An atom containing an equal number of protons and electrons is electrically neutral, otherwise it has a positive or negative charge and is an ion. An atom is classified according to the number of protons and neutrons in its nucleus: the number of protons determines the chemical element, and the number of neutrons determine the isotope of the element.
The name atom comes from the Greek ἄτομος/átomos, α-τεμνω, which means uncuttable, something that cannot be divided further. The concept of an atom as an indivisible component of matter was first proposed by early Indian and Greek philosophers. In the 17th and 18th centuries, chemists provided a physical basis for this idea by showing that certain substances could not be further broken down by chemical methods. During the late 19th and early 20th centuries, physicists discovered subatomic components and structure inside the atom, thereby demonstrating that the 'atom' was not indivisible. The principles of quantum mechanics were used to successfully model the atom.[1][2]
Relative to everyday experience, atoms are minuscule objects with proportionately tiny masses. Atoms can only be observed individually using special instruments such as the scanning tunneling microscope. Over 99.9% of an atom's mass is concentrated in the nucleus,[note 1] with protons and neutrons having roughly equal mass. Each element has at least one isotope with unstable nuclei that can undergo radioactive decay. This can result in a transmutation that changes the number of protons or neutrons in a nucleus.[3] Electrons that are bound to atoms possess a set of stable energy levels, or orbitals, and can undergo transitions between them by absorbing or emitting photons that match the energy differences between the levels. The electrons determine the chemical properties of an element, and strongly influence an atom's magnetic properties.
Contents
[hide]
* 1 History
* 2 Components
o 2.1 Subatomic particles
o 2.2 Nucleus
o 2.3 Electron cloud
* 3 Properties
o 3.1 Nuclear properties
o 3.2 Mass
o 3.3 Size
o 3.4 Radioactive decay
o 3.5 Magnetic moment
o 3.6 Energy levels
o 3.7 Valence and bonding behavior
o 3.8 States
* 4 Identification
* 5 Origin and current state
o 5.1 Nucleosynthesis
o 5.2 Earth
o 5.3 Rare and theoretical forms
* 6 See also
* 7 Notes
* 8 References
o 8.1 Book references
* 9 External links
History
Main articles: Atomic theory and Atomism
The concept that matter is composed of discrete units and cannot be divided into arbitrarily tiny quantities has been around for millennia, but these ideas were founded in abstract, philosophical reasoning rather than experimentation and empirical observation. The nature of atoms in philosophy varied considerably over time and between cultures and schools, and often had spiritual elements. Nevertheless, the basic idea of the atom was adopted by scientists thousands of years later because it elegantly explained new discoveries in the field of chemistry.[4]
The earliest references to the concept of atoms date back to ancient India in the 6th century BCE.[5] The Nyaya and Vaisheshika schools developed elaborate theories of how atoms combined into more complex objects (first in pairs, then trios of pairs).[6] The references to atoms in the West emerged a century later from Leucippus whose student, Democritus, systemized his views. In approximately 450 BCE, Democritus coined the term átomos (Greek: ἄτομος), which means "uncuttable" or "the smallest indivisible particle of matter", i.e., something that cannot be divided. Although the Indian and Greek concepts of the atom were based purely on philosophy, modern science has retained the name coined by Democritus.[4]
Further progress in the understanding of atoms did not occur until the science of chemistry began to develop. In 1661, natural philosopher Robert Boyle published The Sceptical Chymist in which he argued that matter was composed of various combinations of different "corpuscules" or atoms, rather than the classical elements of air, earth, fire and water.[7] In 1789 the term element was defined by the French nobleman and scientific researcher Antoine Lavoisier to mean basic substances that could not be further broken down by the methods of chemistry.[8]
Various atoms and molecules as depicted in John Dalton's A New System of Chemical Philosophy (1808).
In 1803, English instructor and natural philosopher John Dalton used the concept of atoms to explain why elements always react in a ratio of small whole numbers—the law of multiple proportions—and why certain gases dissolve better in water than others. He proposed that each element consists of atoms of a single, unique type, and that these atoms can join together to form chemical compounds.[9][10]
Additional validation of particle theory (and by extension atomic theory) occurred in 1827 when botanist Robert Brown used a microscope to look at dust grains floating in water and discovered that they moved about erratically—a phenomenon that became known as "Brownian motion". J. Desaulx suggested in 1877 that the phenomenon was caused by the thermal motion of water molecules, and in 1905 Albert Einstein produced the first mathematical analysis of the motion.[11][12][13] French physicist Jean Perrin used Einstein's work to experimentally determine the mass and dimensions of atoms, thereby conclusively verifying Dalton's atomic theory.[14]
The physicist J. J. Thomson, through his work on cathode rays in 1897, discovered the electron and its subatomic nature, which destroyed the concept of atoms as being indivisible units.[15] Thomson believed that the electrons were distributed throughout the atom, with their charge balanced by the presence of a uniform sea of positive charge (the plum pudding model).
However, in 1909, researchers under the direction of physicist Ernest Rutherford bombarded a sheet of gold foil with helium ions and discovered that a small percentage were deflected through much larger angles than was predicted using Thomson's proposal. Rutherford interpreted the gold foil experiment as suggesting that the positive charge of an atom and most of its mass was concentrated in a nucleus at the center of the atom (the Rutherford model), with the electrons orbiting it like planets around a sun. Positively charged helium ions passing close to this dense nucleus would then be deflected away at much sharper angles.[16]
While experimenting with the products of radioactive decay, in 1913 radiochemist Frederick Soddy discovered that there appeared to be more than one type of atom at each position on the periodic table.[17] The term isotope was coined by Margaret Todd as a suitable name for different atoms that belong to the same element. J.J. Thomson created a technique for separating atom types through his work on ionized gases, which subsequently led to the discovery of stable isotopes.[18]
A Bohr model of the hydrogen atom, showing an electron jumping between fixed orbits and emitting a photon of energy with a specific frequency.
Meanwhile, in 1913, physicist Niels Bohr revised Rutherford's model by suggesting that the electrons were confined into clearly defined, quantized orbits, and could jump between these, but could not freely spiral inward or outward in intermediate states.[19] An electron must absorb or emit specific amounts of energy to transition between these fixed orbits. When the light from a heated material was passed through a prism, it produced a multi-colored spectrum. The appearance of fixed lines in this spectrum was successfully explained by the orbital transitions.[20]
Chemical bonds between atoms were now explained, by Gilbert Newton Lewis in 1916, as the interactions between their constituent electrons.[21] As the chemical properties of the elements were known to largely repeat themselves according to the periodic law,[22] in 1919 the American chemist Irving Langmuir suggested that this could be explained if the electrons in an atom were connected or clustered in some manner. Groups of electrons were thought to occupy a set of electron shells about the nucleus.[23]
The Stern–Gerlach experiment of 1922 provided further evidence of the quantum nature of the atom. When a beam of silver atoms was passed through a specially-shaped magnetic field, the beam was split based on the direction of an atom's angular momentum, or spin. As this direction is random, the beam could be expected to spread into a line. Instead, the beam was split into two parts, depending on whether the atomic spin was oriented up or down.[24]
In 1926, Erwin Schrödinger, using Louis de Broglie's 1924 proposal that particles behave to an extent like waves, developed a mathematical model of the atom that described the electrons as three-dimensional waveforms, rather than point particles. A consequence of using waveforms to describe electrons is that it is mathematically impossible to obtain precise values for both the position and momentum of a particle at the same time; this became known as the uncertainty principle, formulated by Werner Heisenberg in 1926. In this concept, for each measurement of a position one could only obtain a range of probable values for momentum, and vice versa. Although this model was difficult to visualize, it was able to explain observations of atomic behavior that previous models could not, such as certain structural and spectral patterns of atoms larger than hydrogen. Thus, the planetary model of the atom was discarded in favor of one that described atomic orbital zones around the nucleus where a given electron is most likely to exist.[25][26]
Schematic diagram of a simple mass spectrometer.
The development of the mass spectrometer allowed the exact mass of atoms to be measured. The device uses a magnet to bend the trajectory of a beam of ions, and the amount of deflection is determined by the ratio of an atom's mass to its charge. The chemist Francis William Aston used this instrument to demonstrate that isotopes had different masses. The mass of these isotopes varied by integer amounts, called the whole number rule.[27] The explanation for these different atomic isotopes awaited the discovery of the neutron, a neutral-charged particle with a mass similar to the proton, by the physicist James Chadwick in 1932. Isotopes were then explained as elements with the same number of protons, but different numbers of neutrons within the nucleus.[28]
In the 1950s, the development of improved particle accelerators and particle detectors allowed scientists to study the impacts of atoms moving at high energies.[29] Neutrons and protons were found to be hadrons, or composites of smaller particles called quarks. Standard models of nuclear physics were developed that successfully explained the properties of the nucleus in terms of these sub-atomic particles and the forces that govern their interactions.[30]
Around 1985, Steven Chu and co-workers at Bell Labs developed a technique for lowering the temperatures of atoms using lasers. In the same year, a team led by William D. Phillips managed to contain atoms of sodium in a magnetic trap. The combination of these two techniques and a method based on the Doppler effect, developed by Claude Cohen-Tannoudji and his group, allows small numbers of atoms to be cooled to several microkelvin. This allows the atoms to be studied with great precision, and later led to the discovery of Bose-Einstein condensation.[31]
Historically, single atoms have been prohibitively small for scientific applications. Recently, devices have been constructed that use a single metal atom connected through organic ligands to construct a single electron transistor.[32] Experiments have been carried out by trapping and slowing single atoms using laser cooling in a cavity to gain a better physical understanding of matter.[33]
Components
Subatomic particles
Main article: Subatomic particle
Though the word atom originally denoted a particle that cannot be cut into smaller particles, in modern scientific usage the atom is composed of various subatomic particles. The constituent particles of an atom are the electron, the proton and the neutron. However, the hydrogen-1 atom has no neutrons and a positive hydrogen ion has no electrons.
The electron is by far the least massive of these particles at 9.11 × 10−31 kg, with a negative electrical charge and a size that is too small to be measured using available techniques.[34] Protons have a positive charge and a mass 1,836 times that of the electron, at 1.6726 × 10−27 kg, although this can be reduced by changes to the energy binding the proton into an atom. Neutrons have no electrical charge and have a free mass of 1,839 times the mass of electrons,[35] or 1.6929 × 10−27 kg. Neutrons and protons have comparable dimensions—on the order of 2.5 × 10−15 m—although the 'surface' of these particles is not sharply defined.[36]
In the Standard Model of physics, both protons and neutrons are composed of elementary particles called quarks. The quark belongs to the fermion group of particles, and is one of the two basic constituents of matter—the other being the lepton, of which the electron is an example. There are six types of quarks, each having a fractional electric charge of either +2/3 or −1/3. Protons are composed of two up quarks and one down quark, while a neutron consists of one up quark and two down quarks. This distinction accounts for the difference in mass and charge between the two particles. The quarks are held together by the strong nuclear force, which is mediated by gluons. The gluon is a member of the family of gauge bosons, which are elementary particles that mediate physical forces.[37][38]
Nucleus
Main article: Atomic nucleus
The binding energy needed for a nucleon to escape the nucleus, for various isotopes.
All the bound protons and neutrons in an atom make up a tiny atomic nucleus, and are collectively called nucleons. The radius of a nucleus is approximately equal to \begin{smallmatrix}1.07 \sqrt[3]{A}\end{smallmatrix} fm, where A is the total number of nucleons.[39] This is much smaller than the radius of the atom, which is on the order of 105 fm. The nucleons are bound together by a short-ranged attractive potential called the residual strong force. At distances smaller than 2.5 fm this force is much more powerful than the electrostatic force that causes positively charged protons to repel each other.[40]
Atoms of the same element have the same number of protons, called the atomic number. Within a single element, the number of neutrons may vary, determining the isotope of that element. The total number of protons and neutrons determine the nuclide. The number of neutrons relative to the protons determines the stability of the nucleus, with certain isotopes undergoing radioactive decay.[41]
The neutron and the proton are different types of fermions. The Pauli exclusion principle is a quantum mechanical effect that prohibits identical fermions (such as multiple protons) from occupying the same quantum physical state at the same time. Thus every proton in the nucleus must occupy a different state, with its own energy level, and the same rule applies to all of the neutrons. (This prohibition does not apply to a proton and neutron occupying the same quantum state.)[42]
For atoms with low atomic numbers, a nucleus that has a different number of protons than neutrons can potentially drop to a lower energy state through a radioactive decay that causes the number of protons and neutrons to more closely match. As a result, atoms with roughly matching numbers of protons and neutrons are more stable against decay. However, with increasing atomic number, the mutual repulsion of the protons requires an increasing proportion of neutrons to maintain the stability of the nucleus, which modifies this trend. Thus, there are no stable nuclei with equal proton and neutron numbers above atomic number Z = 20 (calcium); and as Z increases toward the heaviest nuclei, the ratio of neutrons per proton required for stability increases to about 1.5.[42]
Illustration of a nuclear fusion process that forms a deuterium nucleus, consisting of a proton and a neutron, from two protons. A positron (e+)—an antimatter electron—is emitted along with an electron neutrino.
The number of protons and neutrons in the atomic nucleus can be modified, although this can require very high energies because of the strong force. Nuclear fusion occurs when multiple atomic particles join to form a heavier nucleus, such as through the energetic collision of two nuclei. For example, at the core of the Sun protons require energies of 3–10 keV to overcome their mutual repulsion—the coulomb barrier—and fuse together into a single nucleus.[43] Nuclear fission is the opposite process, causing a nucleus to split into two smaller nuclei—usually through radioactive decay. The nucleus can also be modified through bombardment by high energy subatomic particles or photons. If this modifies the number of protons in a nucleus, the atom changes to a different chemical element.[44][45]
If the mass of the nucleus following a fusion reaction is less than the sum of the masses of the separate particles, then the difference between these two values is emitted as energy, as described by Albert Einstein's mass–energy equivalence formula, E = mc2, where m is the mass loss and c is the speed of light. This deficit is the binding energy of the nucleus.[46]
The fusion of two nuclei that have lower atomic numbers than iron and nickel is usually an exothermic process that releases more energy than is required to bring them together.[47] It is this energy-releasing process that makes nuclear fusion in stars a self-sustaining reaction. For heavier nuclei, the total binding energy begins to decrease. That means fusion processes with nuclei that have higher atomic numbers is an endothermic process. These more massive nuclei can not undergo an energy-producing fusion reaction that can sustain the hydrostatic equilibrium of a star.[42]
Electron cloud
Main articles: Electron cloud and Atomic orbital
A potential well, showing the minimum energy V(x) needed to reach each position x. A particle with energy E is constrained to a range of positions between x1 and x2.
The electrons in an atom are attracted to the protons in the nucleus by the electromagnetic force. This force binds the electrons inside an electrostatic potential well surrounding the smaller nucleus, which means that an external source of energy is needed in order for the electron to escape. The closer an electron is to the nucleus, the greater the attractive force. Hence electrons bound near the center of the potential well require more energy to escape than those at greater separations.
Electrons, like other particles, have properties of both a particle and a wave. The electron cloud is a region inside the potential well where each electron forms a type of three-dimensional standing wave—a wave form that does not move relative to the nucleus. This behavior is defined by an atomic orbital, a mathematical function that characterises the probability that an electron will appear to be at a particular location when its position is measured.[48] Only a discrete (or quantized) set of these orbitals exist around the nucleus, as other possible wave patterns will rapidly decay into a more stable form.[49] Orbitals can have one or more ring or node structures, and they differ from each other in size, shape and orientation.[50]
Wave functions of the first five atomic orbitals. The three 2p orbitals each display a single angular node that has an orientation and a minimum at the center.
Each atomic orbital corresponds to a particular energy level of the electron. The electron can change its state to a higher energy level by absorbing a photon with sufficient energy to boost it into the new quantum state. Likewise, through spontaneous emission, an electron in a higher energy state can drop to a lower energy state while radiating the excess energy as a photon. These characteristic energy values, defined by the differences in the energies of the quantum states, are responsible for atomic spectral lines.[49]
The amount of energy needed to remove or add an electron (the electron binding energy) is far less than the binding energy of nucleons. For example, it requires only 13.6 eV to strip a ground-state electron from a hydrogen atom,[51] compared to 2.23 Mev for splitting a deuterium nucleus.[52] Atoms are electrically neutral if they have an equal number of protons and electrons. Atoms that have either a deficit or a surplus of electrons are called ions. Electrons that are farthest from the nucleus may be transferred to other nearby atoms or shared between atoms. By this mechanism, atoms are able to bond into molecules and other types of chemical compounds like ionic and covalent network crystals.[53]
Properties
Nuclear properties
Main articles: Isotope, Stable isotope, and List of elements by nuclear stability
By definition, any two atoms with an identical number of protons in their nuclei belong to the same chemical element. Atoms with equal numbers of protons but a different number of neutrons are different isotopes of the same element. For example, all hydrogen atoms admit exactly one proton, but isotopes exist with no neutrons (hydrogen-1, by far the most common form, sometimes called protium), one neutron (deuterium), two neutrons (tritium) and more than two neutrons.[54] The known elements form a set of atomic numbers from hydrogen with a single proton up to the 118-proton element ununoctium.[55] All known isotopes of elements with atomic numbers greater than 82 are radioactive.[56][57]
About 339 nuclides occur naturally on Earth, of which 269 (about 79%) have not been observed to decay.[58] Of the chemical elements, 80 have one or more stable isotopes. Elements 43, 61, and all elements numbered 83 or higher have no stable isotopes. As a rule, there is, for each atomic number (each element) only a handful of stable isotopes, the average being 3.1 stable isotopes per element which has any stable isotopes. Twenty-seven elements have only a single stable isotope, while the largest number of stable isotopes observed for any element is ten (for the element tin).[59]
Stability of isotopes is affected by the ratio of protons to neutrons, and also by presence of certain "magic numbers" of neutrons or protons which represent closed and filled quantum shells. These quantum shells correspond to a set of energy levels within the shell model of the nucleus; filled shells, such as the filled shell of 50 protons for tin, confers unusual stability on the nuclide. Of the 250 known stable nuclides, only four have both an odd number of protons and odd number of neutrons: 2H, 6Li, 10B and 14N. Also, only four naturally-occurring, radioactive odd-odd nuclides have a half-life over a billion years: 40K, 50V, 138La and 180mTa. Most odd-odd nuclei are highly unstable with respect to beta decay, because the decay products are even-even, and are therefore more strongly bound, due to nuclear pairing effects.[59]
Mass
Main article: Atomic mass
Because the large majority of an atom's mass comes from the protons and neutrons, the total number of these particles in an atom is called the mass number. The mass of an atom at rest is often expressed using the unified atomic mass unit (u), which is also called a Dalton (Da). This unit is defined as a twelfth of the mass of a free neutral atom of carbon-12, which is approximately 1.66 × 10−27 kg.[60] Hydrogen-1, the lightest isotope of hydrogen and the atom with the lowest mass, has an atomic weight of 1.007825 u.[61] An atom has a mass approximately equal to the mass number times the atomic mass unit.[62] The heaviest stable atom is lead-208,[56] with a mass of 207.9766521 u.[63]
As even the most massive atoms are far too light to work with directly, chemists instead use the unit of moles. The mole is defined such that one mole of any element will always have the same number of atoms (about 6.022 × 1023). This number was chosen so that if an element has an atomic mass of 1 u, a mole of atoms of that element will have a mass of 0.001 kg, or 1 gram. Carbon, for example, has an atomic mass of 12 u, so a mole of carbon atoms weighs 0.012 kg.[60]
Size
Main article: Atomic radius
Atoms lack a well-defined outer boundary, so the dimensions are usually described in terms of the distances between two nuclei when the two atoms are joined in a chemical bond. The radius varies with the location of an atom on the atomic chart, the type of chemical bond, the number of neighboring atoms (coordination number) and a quantum mechanical property known as spin.[64] On the periodic table of the elements, atom size tends to increase when moving down columns, but decrease when moving across rows (left to right).[65] Consequently, the smallest atom is helium with a radius of 32 pm, while one of the largest is caesium at 225 pm.[66] These dimensions are thousands of times smaller than the wavelengths of light (400–700 nm) so they can not be viewed using an optical microscope. However, individual atoms can be observed using a scanning tunneling microscope.
Some examples will demonstrate the minuteness of the atom. A typical human hair is about 1 million carbon atoms in width.[67] A single drop of water contains about 2 sextillion (2 × 1021) atoms of oxygen, and twice the number of hydrogen atoms.[68] A single carat diamond with a mass of 2 × 10-4 kg contains about 10 sextillion (1022) atoms of carbon.[note 2] If an apple were magnified to the size of the Earth, then the atoms in the apple would be approximately the size of the original apple.[69]
Radioactive decay
Main article: Radioactive decay
This diagram shows the half-life (T½) in seconds of various isotopes with Z protons and N neutrons.
Every element has one or more isotopes that have unstable nuclei that are subject to radioactive decay, causing the nucleus to emit particles or electromagnetic radiation. Radioactivity can occur when the radius of a nucleus is large compared with the radius of the strong force, which only acts over distances on the order of 1 fm.[70]
The most common forms of radioactive decay are:[71][72]
* Alpha decay is caused when the nucleus emits an alpha particle, which is a helium nucleus consisting of two protons and two neutrons. The result of the emission is a new element with a lower atomic number.
* Beta decay is regulated by the weak force, and results from a transformation of a neutron into a proton, or a proton into a neutron. The first is accompanied by the emission of an electron and an antineutrino, while the second causes the emission of a positron and a neutrino. The electron or positron emissions are called beta particles. Beta decay either increases or decreases the atomic number of the nucleus by one.
* Gamma decay results from a change in the energy level of the nucleus to a lower state, resulting in the emission of electromagnetic radiation. This can occur following the emission of an alpha or a beta particle from radioactive decay.
Other more rare types of radioactive decay include ejection of neutrons or protons or clusters of nucleons from a nucleus, or more than one beta particle, or result (through internal conversion) in production of high-speed electrons which are not beta rays, and high-energy photons which are not gamma rays.
Each radioactive isotope has a characteristic decay time period—the half-life—that is determined by the amount of time needed for half of a sample to decay. This is an exponential decay process that steadily decreases the proportion of the remaining isotope by 50% every half life. Hence after two half-lives have passed only 25% of the isotope will be present, and so forth.[70]
Magnetic moment
Main articles: Electron magnetic dipole moment and Nuclear magnetic moment
Elementary particles possess an intrinsic quantum mechanical property known as spin. This is analogous to the angular momentum of an object that is spinning around its center of mass, although strictly speaking these particles are believed to be point-like and cannot be said to be rotating. Spin is measured in units of the reduced Planck constant (ħ), with electrons, protons and neutrons all having spin ½ ħ, or "spin-½". In an atom, electrons in motion around the nucleus possess orbital angular momentum in addition to their spin, while the nucleus itself possesses angular momentum due to its nuclear spin.[73]
The magnetic field produced by an atom—its magnetic moment—is determined by these various forms of angular momentum, just as a rotating charged object classically produces a magnetic field. However, the most dominant contribution comes from spin. Due to the nature of electrons to obey the Pauli exclusion principle, in which no two electrons may be found in the same quantum state, bound electrons pair up with each other, with one member of each pair in a spin up state and the other in the opposite, spin down state. Thus these spins cancel each other out, reducing the total magnetic dipole moment to zero in some atoms with even number of electrons.[74]
In ferromagnetic elements such as iron, an odd number of electrons leads to an unpaired electron and a net overall magnetic moment. The orbitals of neighboring atoms overlap and a lower energy state is achieved when the spins of unpaired electrons are aligned with each other, a process known as an exchange interaction. When the magnetic moments of ferromagnetic atoms are lined up, the material can produce a measurable macroscopic field. Paramagnetic materials have atoms with magnetic moments that line up in random directions when no magnetic field is present, but the magnetic moments of the individual atoms line up in the presence of a field.[74][75]
The nucleus of an atom can also have a net spin. Normally these nuclei are aligned in random directions because of thermal equilibrium. However, for certain elements (such as xenon-129) it is possible to polarize a significant proportion of the nuclear spin states so that they are aligned in the same direction—a condition called hyperpolarization. This has important applications in magnetic resonance imaging.[76][77]
Energy levels
Main articles: Energy level and Atomic spectral line
When an electron is bound to an atom, it has a potential energy that is inversely proportional to its distance from the nucleus. This is measured by the amount of energy needed to unbind the electron from the atom, and is usually given in units of electronvolts (eV). In the quantum mechanical model, a bound electron can only occupy a set of states centered on the nucleus, and each state corresponds to a specific energy level. The lowest energy state of a bound electron is called the ground state, while an electron at a higher energy level is in an excited state.[78]
In order for an electron to transition between two different states, it must absorb or emit a photon at an energy matching the difference in the potential energy of those levels. The energy of an emitted photon is proportional to its frequency, so these specific energy levels appear as distinct bands in the electromagnetic spectrum.[79] Each element has a characteristic spectrum that can depend on the nuclear charge, subshells filled by electrons, the electromagnetic interactions between the electrons and other factors.[80]
An example of absorption lines in a spectrum.
When a continuous spectrum of energy is passed through a gas or plasma, some of the photons are absorbed by atoms, causing electrons to change their energy level. Those excited electrons that remain bound to their atom will spontaneously emit this energy as a photon, traveling in a random direction, and so drop back to lower energy levels. Thus the atoms behave like a filter that forms a series of dark absorption bands in the energy output. (An observer viewing the atoms from a different direction, which does not include the continuous spectrum in the background, will instead see a series of emission lines from the photons emitted by the atoms.) Spectroscopic measurements of the strength and width of spectral lines allow the composition and physical properties of a substance to be determined.[81]
Close examination of the spectral lines reveals that some display a fine structure splitting. This occurs because of spin-orbit coupling, which is an interaction between the spin and motion of the outermost electron.[82] When an atom is in an external magnetic field, spectral lines become split into three or more components; a phenomenon called the Zeeman effect. This is caused by the interaction of the magnetic field with the magnetic moment of the atom and its electrons. Some atoms can have multiple electron configurations with the same energy level, which thus appear as a single spectral line. The interaction of the magnetic field with the atom shifts these electron configurations to slightly different energy levels, resulting in multiple spectral lines.[83] The presence of an external electric field can cause a comparable splitting and shifting of spectral lines by modifying the electron energy levels, a phenomenon called the Stark effect.[84]
If a bound electron is in an excited state, an interacting photon with the proper energy can cause stimulated emission of a photon with a matching energy level. For this to occur, the electron must drop to a lower energy state that has an energy difference matching the energy of the interacting photon. The emitted photon and the interacting photon will then move off in parallel and with matching phases. That is, the wave patterns of the two photons will be synchronized. This physical property is used to make lasers, which can emit a coherent beam of light energy in a narrow frequency band.[85]
Valence and bonding behavior
Main articles: Valence (chemistry) and Chemical bond
The outermost electron shell of an atom in its uncombined state is known as the valence shell, and the electrons in that shell are called valence electrons. The number of valence electrons determines the bonding behavior with other atoms. Atoms tend to chemically react with each other in a manner that will fill (or empty) their outer valence shells.[86] For example, a transfer of a single electron between atoms is a useful approximation for bonds which form between atoms which have one-electron more than a filled shell, and others which are one-electron short of a full shell, such as occurs in the compound sodium chloride and other chemical ionic salts. However, many elements display multiple valences, or tendencies to share differing numbers of electrons in different compounds. Thus, chemical bonding between these elements takes many forms of electron-sharing that are more than simple electron transfers. Examples include the element carbon and the organic compounds.[87]
The chemical elements are often displayed in a periodic table that is laid out to display recurring chemical properties, and elements with the same number of valence electrons form a group that is aligned in the same column of the table. (The horizontal rows correspond to the filling of a quantum shell of electrons.) The elements at the far right of the table have their outer shell completely filled with electrons, which results in chemically inert elements known as the noble gases.[88][89]
States
Main articles: State of matter and Phase (matter)
Snapshots illustrating the formation of a Bose–Einstein condensate.
Quantities of atoms are found in different states of matter that depend on the physical conditions, such as temperature and pressure. By varying the conditions, materials can transition between solids, liquids, gases and plasmas.[90] Within a state, a material can also exist in different phases. An example of this is solid carbon, which can exist as graphite or diamond.[91]
At temperatures close to absolute zero, atoms can form a Bose–Einstein condensate, at which point quantum mechanical effects, which are normally only observed at the atomic scale, become apparent on a macroscopic scale.[92][93] This super-cooled collection of atoms then behaves as a single super atom, which may allow fundamental checks of quantum mechanical behavior.[94]
Identification
Scanning tunneling microscope image showing the individual atoms making up this gold (100) surface. Reconstruction causes the surface atoms to deviate from the bulk crystal structure and arrange in columns several atoms wide with pits between them.
The scanning tunneling microscope is a device for viewing surfaces at the atomic level. It uses the quantum tunneling phenomenon, which allows particles to pass through a barrier that would normally be insurmountable. Electrons tunnel through the vacuum between two planar metal electrodes, on each of which is an adsorbed atom, providing a tunneling-current density that can be measured. Scanning one atom (taken as the tip) as it moves past the other (the sample) permits plotting of tip displacement versus lateral separation for a constant current. The calculation shows the extent to which scanning-tunneling-microscope images of an individual atom are visible. It confirms that for low bias, the microscope images the space-averaged dimensions of the electron orbitals across closely packed energy levels—the Fermi level local density of states.[95][96]
An atom can be ionized by removing one of its electrons. The electric charge causes the trajectory of an atom to bend when it passes through a magnetic field. The radius by which the trajectory of a moving ion is turned by the magnetic field is determined by the mass of the atom. The mass spectrometer uses this principle to measure the mass-to-charge ratio of ions. If a sample contains multiple isotopes, the mass spectrometer can determine the proportion of each isotope in the sample by measuring the intensity of the different beams of ions. Techniques to vaporize atoms include inductively coupled plasma atomic emission spectroscopy and inductively coupled plasma mass spectrometry, both of which use a plasma to vaporize samples for analysis.[97]
A more area-selective method is electron energy loss spectroscopy, which measures the energy loss of an electron beam within a transmission electron microscope when it interacts with a portion of a sample. The atom-probe tomograph has sub-nanometer resolution in 3-D and can chemically identify individual atoms using time-of-flight mass spectrometry.[98]
Spectra of excited states can be used to analyze the atomic composition of distant stars. Specific light wavelengths contained in the observed light from stars can be separated out and related to the quantized transitions in free gas atoms. These colors can be replicated using a gas-discharge lamp containing the same element.[99] Helium was discovered in this way in the spectrum of the Sun 23 years before it was found on Earth.[100]
Origin and current state
Atoms form about 4% of the total energy density of the observable universe, with an average density of about 0.25 atoms/m3.[101] Within a galaxy such as the Milky Way, atoms have a much higher concentration, with the density of matter in the interstellar medium (ISM) ranging from 105 to 109 atoms/m3.[102] The Sun is believed to be inside the Local Bubble, a region of highly ionized gas, so the density in the solar neighborhood is only about 103 atoms/m3.[103] Stars form from dense clouds in the ISM, and the evolutionary processes of stars result in the steady enrichment of the ISM with elements more massive than hydrogen and helium. Up to 95% of the Milky Way's atoms are concentrated inside stars and the total mass of atoms forms about 10% of the mass of the galaxy.[104] (The remainder of the mass is an unknown dark matter.[105])
Nucleosynthesis
Main article: Nucleosynthesis
Stable protons and electrons appeared one second after the Big Bang. During the following three minutes, Big Bang nucleosynthesis produced most of the helium, lithium, and deuterium in the universe, and perhaps some of the beryllium and boron.[106][107][108] The first atoms (complete with bound electrons) were theoretically created 380,000 years after the Big Bang—an epoch called recombination, when the expanding universe cooled enough to allow electrons to become attached to nuclei.[109] Since then, atomic nuclei have been combined in stars through the process of nuclear fusion to produce elements up to iron.[110]
Isotopes such as lithium-6 are generated in space through cosmic ray spallation.[111] This occurs when a high-energy proton strikes an atomic nucleus, causing large numbers of nucleons to be ejected. Elements heavier than iron were produced in supernovae through the r-process and in AGB stars through the s-process, both of which involve the capture of neutrons by atomic nuclei.[112] Elements such as lead formed largely through the radioactive decay of heavier elements.[113]
Earth
Most of the atoms that make up the Earth and its inhabitants were present in their current form in the nebula that collapsed out of a molecular cloud to form the Solar System. The rest are the result of radioactive decay, and their relative proportion can be used to determine the age of the Earth through radiometric dating.[114][115] Most of the helium in the crust of the Earth (about 99% of the helium from gas wells, as shown by its lower abundance of helium-3) is a product of alpha decay.[116]
There are a few trace atoms on Earth that were not present at the beginning (i.e., not "primordial"), nor are results of radioactive decay. Carbon-14 is continuously generated by cosmic rays in the atmosphere.[117] Some atoms on Earth have been artificially generated either deliberately or as by-products of nuclear reactors or explosions.[118][119] Of the transuranic elements—those with atomic numbers greater than 92—only plutonium and neptunium occur naturally on Earth.[120][121] Transuranic elements have radioactive lifetimes shorter than the current age of the Earth[122] and thus identifiable quantities of these elements have long since decayed, with the exception of traces of plutonium-244 possibly deposited by cosmic dust.[114] Natural deposits of plutonium and neptunium are produced by neutron capture in uranium ore.[123]
The Earth contains approximately 1.33 × 1050 atoms.[124] In the planet's atmosphere, small numbers of independent atoms of noble gases exist, such as argon and neon. The remaining 99% of the atmosphere is bound in the form of molecules, including carbon dioxide and diatomic oxygen and nitrogen. At the surface of the Earth, atoms combine to form various compounds, including water, salt, silicates and oxides. Atoms can also combine to create materials that do not consist of discrete molecules, including crystals and liquid or solid metals.[125][126] This atomic matter forms networked arrangements that lack the particular type of small-scale interrupted order associated with molecular matter.[127]
Rare and theoretical forms
While isotopes with atomic numbers higher than lead (82) are known to be radioactive, an "island of stability" has been proposed for some elements with atomic numbers above 103. These superheavy elements may have a nucleus that is relatively stable against radioactive decay.[128] The most likely candidate for a stable superheavy atom, unbihexium, has 126 protons and 184 neutrons.[129]
Each particle of matter has a corresponding antimatter particle with the opposite electrical charge. Thus, the positron is a positively charged antielectron and the antiproton is a negatively charged equivalent of a proton. When a matter and corresponding antimatter particle meet, they annihilate each other. Because of this, along with an imbalance between the number of matter and antimatter particles, the latter are rare in the universe. (The first causes of this imbalance is not yet fully understood, although the baryogenesis theories may offer an explanation.) As a result, no antimatter atoms have been discovered in nature.[130][131] However, in 1996, antihydrogen, the antimatter counterpart of hydrogen, was synthesized at the CERN laboratory in Geneva.[132][133]
Other exotic atoms have been created by replacing one of the protons, neutrons or electrons with other particles that have the same charge. For example, an electron can be replaced by a more massive muon, forming a muonic atom. These types of atoms can be used to test the fundamental predictions of physics.[134][135][136]
Subscribe to:
Posts (Atom)